화학공학소재연구정보센터
Korean Chemical Engineering Research, Vol.43, No.6, 728-739, December, 2005
PSA 공정에 의한 이성분 및 삼성분 혼합기체로부터 수소분리
Hydrogen Separation from Binary and Ternary Mixture Gases by Pressure Swing Adsorption
E-mail:
초록
활성탄을 흡착제로 이용한 2bed-6step PSA 공정에서 이성분 혼합기체 H2/Ar(80%/ 20%)와 삼성분 혼합기체 H2/Ar/CH4 (60%/ 20%/ 20%)의 수소 분리를 연구하였다. 비등온-비단열 상태에서 LRC 등온식과 LDF 모델을 고려하여 공정실험과 공정모사를 하였으며, 주기정상상태에 도달할 때까지 탑 내의 농도와 온도변화를 각각 알아보았다. 두 공정 모두에서 수소에 대한 순도 99%와 회수율 75%의 결과를 얻을 수 있었다. 이때, PSA 공정에 미치는 영향으로는 공급유량, 흡착압력 그리고 P/F ratio를 변수로 실험과 전산모사를 수행하여 결과를 비교하였다. 이 결과로부터, 다성분에서 최적의 공정조건을 결정에서 중요한 결정요인과 삼성분에서 최적의 공정조건을 알아보았다.
An experiment and simulation were performed for hydrogen separation of mixtures by PSA (pressure swing adsorption) process on activated carbon. The binary (H2/Ar; 80%/ 20%) and ternary (H2/Ar/CH4; 60%/ 20%/ 20%)mixtures were used to study the effects of feed composition. The cyclic performances such as purity, recovery, and productivity of 2bed-6step PSA process were experimentally and theoretically compared under non-isothermal and non-adiabatic conditions. The develped process produced the hydrogen with 99% purity and 75% recovery from both processes. Therefore, optimal separation condition was referred multicomponent gas mixtures.
  1. Shin HS, Suh SS, HWAHAK KONGHAK, 36(6), 930 (1998)
  2. Serbezov A, Sotirchos SV, Sep. Purif. Technol., 31(2), 203 (2003) 
  3. Skarstrom CW, "Recovery of Hydrogen from Hydrocarbon Gas Streams", U.S. Patent No. 3,101,261 (1963)
  4. Hoke RC, Marsh WD, Jerome B, Pramuk FS, "Hydrogen Purification Process", U.S. Patent No. 3,141,748 (1964)
  5. Stark TM, "Gas Separation by Adsorption Process", U.S. Patent No. 3,252,268 (1966)
  6. Batta LB, "Selective Adsorption Process", U.S. Patent No. 3, 564,816 (1971)
  7. Lee JG, Lee JW, Kim MB, Cho CH, Lee CH, HWAHAK KONGHAK, 37(5), 706 (1999)
  8. Doong SJ, Yang RT, Reactive Polymers. Ion Exchangers, Sorbents, 6(1), 7 (1987) 
  9. Fuderer A, Rudelstorfer E, "Selective Adsorption Process", U.S. Patent No. 3,986,849 (1982)
  10. Doong SJ, Yang RT, AIChE J., 32(3), 397 (1986) 
  11. Jee JG, Kim MB, Lee CH, Chem. Eng. Sci., 60(3), 869 (2005) 
  12. Rege SU, Yang RT, Adsorption, 6(1), 15 (2000) 
  13. Miller GW, Knaebel KS, Ikels KG, AIChE J., 33(2), 194 (1987) 
  14. Yang RT, Gas Separation by Adsorption Processes, Butter-worth, Boston, MA (1987)
  15. Ruthven DM, Farooq S, Knaebel KS, Pressure Swing Adsorption, VCH publishers, New York (1994)
  16. Yang J, Han S, Cho C, Lee H, HWAHAK KONGHAK, 33(1), 56 (1995)
  17. Ruthven DM, Principles of Adsorption and Adsorption Processes, John Wiley & Sons, New York (1984)
  18. Chihara K, Suzuki M, J. Chem. Eng. Jpn., 16(1), 53 (1983)
  19. Glueckauf E, Trans. Faraday Soc., 51, 1540 (1955) 
  20. Malek A, Farooq SJ, Chem. Eng. Data., 41(1), 25 (1996) 
  21. Aspen Custom Modeler : Modeling Language Reference Guide, Aspen Technology Inc., Cambrige (2003)
  22. Jeong BM, Kang SH, Choi HW, Lee CH, Lee BK, Choi DK, Korean Chem. Eng. Res., 43(3), 371 (2005)
  23. Nam GM, Jeong BM, Kang SH, Lee CH, Lee BK, Choi DK, Korean Chem. Eng. Res., 43(2), 249 (2005)
  24. Ross S, Olivier JP, On Physical Adsorption, Wiley, New York (1964)
  25. Yang J, Han S, Cho C, Lee CH, Lee H, Sep. Technol., 5(4), 239 (1995) 
  26. Choi BU, Hong SC, Choi DK, Lee BG, Beak YS, Lee CH, Trans. of the Korean Hydrogen Energy Society, 14(1), 81 (2003)
  27. Yang J, Han S, Cho C, Lee H, HWAHAK KONGHAK, 33(1), 56 (1995)
  28. Yang J, Cho C, Baek KH, Lee CH, HWAHAK KONGHAK, 35(4), 545 (1997)
  29. Kvamsdal HM, Hertzberg T, Comput. Chem. Eng., 21(8), 819 (1997) 
  30. Park JH, Kim JN, Cho SH, AIChE J., 46(4), 790 (2000) 
  31. Yang RT, Doong SJ, AIChE J., 31(11), 1829 (1985)