화학공학소재연구정보센터
Korean Chemical Engineering Research, Vol.43, No.6, 756-760, December, 2005
플라즈마 처리된 카본블랙 담지체에 담지된 백금 촉매의 전기화학적 거동
Electrochemical Behaviors of Platinum Catalysts Deposited on the Plasma Treated Carbon Blacks Supports
E-mail:
초록
본 연구에서는 카본블랙을 N2-플라즈마 처리하여 표면 관능기를 변화시킨 후 백금을 담지시켜 전기화학적 활성을 향상시키는 방법에 대하여 고찰하였다. N2-플라즈마 처리된 카본블랙의 표면특성은 FT-IR, XPS 그리고 산-염기도 측정법 등으로 분석하였으며, 전기화학적 특성을 알아보기 위하여 순환전류전압곡선(CV)를 측정하였다. FT-IR과 산-염기도 결과에 의하면 카본블랙을 300W의 일정한 세기로 N2-플라즈마 처리함으로써, 카본블랙 표면에 생성된 자유라 디칼에 의해 새로운 염기성 관능기가 형성되어 처리시간이 증가할수록 염기도가 증가함을 알 수 있었다. C-N, C=N, .NH3 +, .NH 그리고 =NH 등과 같은 새로운 염기성 관능기에 의해 염기도 값이 증가하였으나, 일정 반응시간 이후에 는 카본블랙 표면에 도입한 약한 결합을 이루는 관능기가 파괴되어 새로운 관능기를 형성하지 못하고 아무런 영향을 미치지 못하는 것으로 판단된다. 결과적으로, 백금/카본블랙 촉매의 전기화학적 활성은 300 W의 세기로 처리하였을 때 최적의 표면처리 시간은 30초이다.
In this study, the effect of N2-plasma treatment on carbon blacks (CBs) was investigated by analyzing acidbase surface values and surface functional groups of CBs. The surface characteristics of the CBs were determined by fourier transformed-infrared (FT-IR) spectrometer, X-ray photoelectron spectroscopy (XPS), and Boehm’s titration method. Electrochemical properties of the plasma-treated CBs-supported Pt (Pt/CBs) catalysts were analyzed by cyclic voltammetry (CV) experiments. From the results of FT-IR and acid-base values, N2-plasma treatment at 300 W intensity on the CBs led to the formation of the free radical. The peak intensity was increased with increasing the treatment time due to the formation of new basic functional groups(such as C-N, C=N, .NH3 +, .NH, and =NH) by the free radical. Accordingly, the basic values were increased by the basic functional groups. However, after a specific reaction time, N2-plasma treatment could hardly influence change of surface functional groups of CBs, due to the disappearance of free radical. Consequently, it was found that optimal treatment time was 30 second for electro activity of Pt/CBs catalysts.
  1. Horng RF, Energy Conv. Manag., 46(7), 1193 (2005) 
  2. Okawa Y, Hirata Y, J. European Ceram. Soc., 25(4), 473 (2005) 
  3. Kwak C, Park TJ, Suh DJ, Chem. Eng. Sci., 60(5), 1211 (2005) 
  4. Kuk ST, Wieckowski A, J. Power Sources, 141(1), 1 (2005) 
  5. Chen CY, Yang P, Lee YS, Lin KF, J. Power Sources, 141(1), 24 (2005) 
  6. Kim T, Takahashi M, Nagai M, Kobayashi K, Electrochim. Acta, 50(2), 813 (2004)
  7. Zhou WJ, Song SQ, Li WZ, Sun GQ, Xin Q, Kontou S, Poulianitis K, Tsiakaras P, Solid State Ion., 175(1), 797 (2004) 
  8. Fritts SD, Gopal R, J. Electrochem. Soc., 140(11), 3337 (1993) 
  9. Statti P, Poltarzewski Z, Alderucci V, Maggio G, Giordano N, Int. J. Hydrog. Energy, 19(6), 523 (1994) 
  10. Appleby AJ, J. Power Sources, 37(2), 223 (1992) 
  11. Park SJ, Jeong HJ, Nah C, Polym.(Korea), 27(1), 46 (2003)
  12. Lin CW, Thangamuthu R, Yang CJ, J. Membr. Sci., 253(1), 23 (2005) 
  13. Lee CS, Yi SC, Korean J. Chem. Eng., 21(6), 1153 (2004)
  14. Guo JW, Zhao TS, Prabhuram J, Wong CW, Electrochim. Acta, 50(10), 1973 (2005) 
  15. Rao RK, Trivedi DC, Coord. Chem. Rev., 249(5), 613 (2005) 
  16. Xiong L, Manthiram A, Solid State Ion., 176(3), 385 (2005) 
  17. Qiao H, Kunimatsu M, Okada T, J. Power Sources, 139(1), 30 (2005) 
  18. Pak C, Lee SJ, Lee SA, Chang H, Korean J. Chem. Eng., 22(2), 214 (2005)
  19. Lee YR, Yoo MJ, Chung GY, Lim HC, Lim TH, Nam SW, Hong SA, Korean J. Chem. Eng., 22(2), 219 (2005)
  20. Mozetic M, Zalar A, Panjan P, Bele M, Pejovnik S, Grmek R, Thin Solid Films, 376(1), 5 (2000) 
  21. Frysz CA, Chung DDL, Carbon, 35(8), 1111 (1997) 
  22. Boehm HP, Adv. Catal., 16, 179 (1966)
  23. Boening HV, Plasma Science and Technology, Cornell Press, New York (1982)
  24. Park SJ, Kim JS, J. Colloid Interface Sci., 244(2), 336 (2001) 
  25. Donnet JB, Park SJ, Carbon, 30(2), 263 (1992)