Polymer(Korea), Vol.30, No.1, 85-89, January, 2006
기상성장 탄소섬유/폴리페닐렌설파이드 복합체 제조 및 전기적ㆍ유변학적 거동
Electrical and Rheological Behaviors of VGCF/Polyphenylene Sulfide Composites
E-mail:
초록
이축압출기를 이용한 용융혼련으로 제조한 기상성장 탄소섬유(Vapor Grown Carbon Fiber, VGCF) 충전 폴리페닐렌설파이드(polyphenylene sulfide, PPS) 복합체의 VGCF 함량에 따른 전기적, 유변학적 특성을 살펴보았다. 복합체의 파단면 모폴로지 관찰결과, 본 방법은 PPS 매트릭스 내에 VGCF를 균일하게 분산시키는데 있어서 효과적임을 확인할 수 있었다. 5 wt% VGCF 혼입까지는 미충전 PPS와 거의 유사한 전기적 성질과 유변학적 거동을 보였으며 10 wt%로 VGCF의 혼입양을 증가시켰을 때 현저한 도전성 발현 및 점도 상승, 탄성률의 주파수 무의존성 등 유변학적 성질의 변동이 관찰되었다. 고충전 PPS계에서의 탄성률의 주파수 무의존성은 복합체 내에서의 VGCF의 네트워크 형성으로 인한 것으로 추정되며, 이는 전기적 성질뿐만 아니라 유변학적 성질의 측정결과로부터 복합체 내의 도전성 네트워크의 형성을 확인할 수 있음을 보여준다.
The effect of vapor grown carbon fiber (VGCF) contents on electrical and rheological properties of VGCF filled polyphenylene sulfide (PPS) composites prepared through melt mixing using a twin screw extruder was studied. This method was proved to be quite effective to produce good dispersion of VGCF in the matrix even for highly filled PPS. From the dependence of the electrical conductivity on VGCF content, the percolation phenomena began to occur above 10 wt%. While there is only a marginal increase of viscosity for 1 and 5 wt% VGCF filled PPS, the composites containing 10 wt% VGCF showed abrupt increase in viscosity as well as flattening of frequency vs modulus curve, indicating a transition from a liquid-like to a solid-like behavior due to the creation of VGCF network. This result agrees well to the fact that the network formation in the composite can be confirmed by rheological property dependence on filler content as well as by electrical conductivity measurement.
- Baughman RH, Zakhidov AA, de Heer WA, Science, 297, 787 (2002)
- Shinohara H, Recent Advances in the Research and Development of Nanocarbon Materials, CMC, Tokyo (2003)
- Harris PJF, Int. Mater. Rev., 49, 31 (2004)
- Li C, Chou T, Compos. Sci. Technol., 65, 491 (2005)
- Barrera EV, J. Mineral. Metals and Mat. Soc., 52, 38 (2000)
- Potschke P, Fornes TD, Paul DR, Polymer, 43(11), 3247 (2002)
- Gordeyev SA, Macedo FJ, Ferreira JA, Hattum FWJV, Bernardo CA, Physica B, 279, 33 (2000)
- Takahashi T, Yonetake K, Koyama K, Kikuchi T, Macromol. Rapid Commun., 24, 763 (2003)
- Kuriger RJ, Alam MK, Anderson DP, Jacobsen RL, Compos. Pt. A-Appl. Sci. Manuf., 33, 53 (2002)
- Sandler J, Werner P, Shaffer MSP, Demchuk V, Altstadt V, Windle AH, Compos. Pt. A-Appl. Sci. Manuf., 33, 1033 (2002)
- Jin L, Bower C, Zhou O, Appl. Phys. Lett., 73, 1197 (1998)
- Shaffer MSP, Windle AH, Adv. Mater., 11, 937 (1999)
- Qian D, Dickey EC, Andrews R, Rantell T, Appl. Phys. Lett., 76, 2868 (2000)
- Tosaki M, Sakai H, Sasaki A, Takahashi Y, Matsubara M, Endo M, Kobunshi Ronbunshu, 62, 585 (2005)
- Andrews R, Jacques D, Minot M, Rantell T, Macromol. Mater. Eng., 287, 395 (2002)
- Carneiro OS, Covas JA, Bernardo CA, Caldeira G, Van Hattum FWJ, Ting JM, Alig RL, Lake ML, Compos. Sci. Technol., 58, 401 (1998)
- Mighri F, Huneault MA, Champagne MF, Polym. Eng. Sci., 44(9), 1755 (2004)
- Polymer Physics, The polymer society of Japan, p 15-17 (1998)
- Polymer Data Handbook, Oxford University Press, New York, p 719 (1999)
- Lozano K, Bonilla-Rios J, Barrera EV, J. Appl. Polym. Sci., 80(8), 1162 (2001)
- Seo MK, Park SJ, Chem. Phys. Lett., 395, 44 (2004)
- Abdel-Goad M, Potschke P, J. Non-Newton. Fluid Mech., 128(1), 2 (2005)
- Abdel-Goad M, Potschke P, J. Non-Newton. Fluid Mech., 128(1), 2 (2005)