화학공학소재연구정보센터
Macromolecular Research, Vol.14, No.1, 38-44, February, 2006
Influence of a Stacked-CuPc Layer on the Performance of Organic Light-Emitting Diodes
E-mail:
Vacuum deposited copper phthalocyanine (CuPc) was placed as a thin interlayer between indium tin oxide (ITO) electrode and a hole transporting layer (HTL) in a multi-layered, organic, light-emitting diode (OLEDs). The well-stacked CuPc layer increased the stability and efficiency of the devices. Thermal annealing after CuPc deposition and magnetic field treatment during CuPc deposition were performed to obtain a stacked-CuPc layer; the former increased the stacking density of the CuPc molecules and the alignment of the CuPc film. Thermal annealing at about 100℃ increased the current flow through the CuPc layer by over 25%. Surface roughness decreased from 4.12 to 3.65 nm and spikes were lowered at the film surface as well. However, magnetic field treatment during deposition was less effective than thermal treatment. Eventually, a higher luminescence at a given voltage was obtained when a thermally-annealed CuPc layer was placed in the present, multi-layered, ITO/CuPc/NPD/Alq3/LiF/Al devices. Thermal annealing at about 100 oC for 3 h produced the most efficient, multi-layered EL devices in the present study.
  1. Bao Z, Lovinger AJ, Dodabalapur J, Appl. Phys. Lett., 69, 3066 (1996) 
  2. Bialek B, Kim IG, Lee JI, Thin Solid Films, 436(1), 107 (2003) 
  3. Boamfa MI, Christianen PCM, Maan JC, Engelkamp H, Nolte RJM, Physica B, 294-295, 343 (2001) 
  4. Collins GE, Williams VS, Chau LK, Nebesny KW, England C, Lee PA, Lowe T, Fernando Q, Armstrong NR, Synth. Met., 54, 351 (1993) 
  5. El-Nahass MM, El-Gohary Z, Soliman HS, Opt. Laser Technol., 35, 523 (2003) 
  6. Ji Z, Xiang Y, Ueda Y, Prog. Org. Coat., 49, 180 (2004) 
  7. Khrishnakumar KP, Menon CS, Mater. Lett., 48, 64 (2001) 
  8. Yanagiya S, Nishikata S, Sazaki G, Hoshino A, Nakajima K, Inoue T, J. Cryst. Growth, 254, 244 (2003) 
  9. Giebeler C, Antoniadis H, Bradley DDC, Shirota Y, Appl. Phys. Lett., 72, 2448 (1998) 
  10. Chen SF, Wang CW, Appl. Phys. Lett., 85, 765 (2004) 
  11. Zhou X, Pfeiffer M, Blochwitz J, Werner A, Nollau A, Fritz T, Leo K, Appl. Phys. Lett., 78, 410 (2001) 
  12. Davids PS, Kogan SM, Parker ID, Smith DL, Appl. Phys. Lett., 69, 2270 (1996) 
  13. Zhou X, He J, Liao LS, Lu M, Xiong ZH, Ding XM, Hou XY, Tao FG, Zhou CE, Lee ST, Appl. Phys. Lett., 74, 609 (1999) 
  14. Zheng XY, Wu YZ, Sun RG, Zhu WQ, Jiang XY, Zhang ZL, Xu SH, Thin Solid Films, 478(1-2), 252 (2005) 
  15. Blochwitz J, Pfeiffer M, Fritz T, Leo K, Appl. Phys. Lett., 73, 729 (1998) 
  16. Pfeiffer M, Beyer A, Fritz T, Leo K, Appl. Phys. Lett., 73, 3202 (1998) 
  17. Qiu Y, Gao Y, Wei P, Wang L, Appl. Phys. Lett., 80, 2628 (2002) 
  18. Kato T, Mori T, Mizutani T, Thin Solid Films, 393(1-2), 109 (2001) 
  19. Chan MY, Lai SL, Wong FL, Lengyel O, Lee CS, Lee ST, Chem. Phys. Lett., 371, 700 (2003) 
  20. Lee S, Chung CH, Cho SM, Synth. Met., 126, 269 (2002) 
  21. Giebeler C, Antoniadis H, Bradley DDC, Shirota Y, J. Appl. Phys., 85, 608 (1999) 
  22. Ihm K, Kang TH, Kim KJ, Hwang CC, Park YJ, Lee KB, Kim B, Jeon CH, Park CY, Kim K, Tak YH, Appl. Phys. Lett., 83, 2949 (2003) 
  23. Sun JX, Zhu XL, Peng HJ, Wong M, Kwok HS, Appl. Phys. Lett., 87, 093504 (2005) 
  24. Yam VWW, Li B, Yang Y, Ben WK, Wong KMC, Cheung KK, Eur. J. Inorg. Chem., 22, 4035 (2003) 
  25. Pasimeni L, Meneghetti M, Rella R, Valli L, Granito C, Troisi L, Thin Solid Films, 265(1-2), 58 (1995) 
  26. Armand F, Perez H, Fouriaux S, Araspin O, Pradeau JP, Claessens CG, Maya EM, Vezquez P, Torres T, Synth. Met., 102, 1476 (1999) 
  27. Lee YL, Chen YC, Chang CH, Yang YM, Maa JR, Thin Solid Films, 370(1-2), 278 (2000) 
  28. Jung GY, Yates A, Samuel IDW, Petty MC, Mater. Sci. Eng. C-Biomimetic Supramol. Syst., C14, 1 (2001)
  29. Takemoto K, Inaki Y, Ottenbrite RM, Functional Monomers and Polymers, Chap. 6 Electrically Conducting Polymers, Marcel Dekker, INC., New York and Basel (1987)