화학공학소재연구정보센터
Macromolecular Research, Vol.14, No.1, 87-93, February, 2006
Preparation of Thermo-Responsive and Injectable Hydrogels Based on Hyaluronic Acid and Poly(N-isopropylacrylamide) and Their Drug Release Behaviors
E-mail:
Copolymers composed of hyaluronic acid (HA) and poly(N-isopropylacrylamide) (PNIPAAm) were prepared to create temperature-sensitive injectable gels for use in controlled drug delivery applications. Semi-telechelic PNIPAAm, with amino groups at the end of each main chain, was synthesized by radical polymerization using 2-aminoethanethiol hydrochloride (AESH) as the chain transfer agent, and was then grafted onto the carboxyl groups of HA using carbodiimide chemistry. The result of the thermo-optical analysis revealed that the phase transition of the PNIPAAm-grafted HA solution occurred at around 30~33 ℃. As the graft yield of PNIPAAm onto the HA backbone increased, the HA-g-PNIPAAm copolymer solution exhibited sharper phase transition. The short chain PNIPAAm-grafted HA (Mw =6,100) showed a narrower temperature range for optical turbidity changes than the long chain PNIPAAm-grafted HA (Mw= 13,100). PNIPAAm-grafted HA exhibited an increase in viscosity above 35 ℃, thus allowing the gels to maintain their shape for 24 h after in vivo administration. From the in vitro riboflavin release study, the HA-g-PNIPAAm gel showed a more sustained release behavior when the grafting yield of PNIPAAm onto the HA backbone was increased. In addition, BSA released from the PNIPAAm-g-HA gels showed a maximum concentration in the blood 12 h after being injected into the dorsal surface of a rabbit, followed by a sustained release profile after 60 h.
  1. Hoffman AS, Adv. Drug Deliv. Rev., 43, 3 (2002)
  2. Hubbell JA, Curr. opin. Solid State Mat. Sci., 3, 246 (1998) 
  3. Griffith LG, Acta Mater., 48, 263 (2000) 
  4. Gutowska A, Jeong B, Jasionowski M, Anat. Rec., 263, 342 (2001) 
  5. Kim S, Healy KE, Biomacromolecules, 4, 1214 (2003) 
  6. Holland TA, Tabata Y, Mikos AG, J. Control. Release, 91, 299 (2003) 
  7. Van Tomme SR, van Steenbergen MJ, De Smedt SC, van Nostrum CF, Hennink WE, Biomaterials, 26, 2129 (2005) 
  8. Shu XZ, Liu Y, Palumbo FS, Luo Y, Prestwich GD, Biomaterials, 25, 1339 (2004) 
  9. Cai S, Liu Y, Shu XZ, Prestwich GD, Biomaterials, 26, 6054 (2005) 
  10. Cho KY, Chung TW, Kim BC, Kim MK, Lee JH, Wee WR, Cho CS, J. of Pharmaceutics, 260, 83 (2003) 
  11. Chenite A, Chaput C, Wang D, Combes C, Buschmann MD, Hoemann CD, Leroux JC, Atkinson BL, Binette F, Selmani A, Biomaterials, 21, 2155 (2000) 
  12. West JL, Hubbell JA, Macromolecules, 32(1), 241 (1999) 
  13. Mann BK, Gobin AS, Tsai AT, Schmedlen RH, West JL, Biomaterials, 22, 3045 (2001) 
  14. Park YD, Tirelli N, Hubbell JA, Biomaterials, 24, 893 (2003) 
  15. Schild HG, Prog. Polym. Sci, 17, 163 (1992) 
  16. Yoshida R, Sakai K, Okano T, Sakurai Y, J. Biomater. Sci.-Polym. Ed., 6, 585 (1994)
  17. Inoue T, Chen G, Nakamae K, Hoffman AS, Polym. Gels Netw., 5, 561 (1997) 
  18. Ebara M, Aoyagi T, Sakai K, Okano T, Macromolecules, 33(22), 8312 (2000) 
  19. Zhang J, Peppas NA, Macromolecules, 33(1), 102 (2000) 
  20. Chen G, Hoffman AS, Bioconjugate Chem., 4, 509 (1993) 
  21. Kaneko Y, Sakai K, Kikuchi A, Yoshida R, Sakurai Y, Okano T, Macromolecules, 28(23), 7717 (1995) 
  22. Kanejo Y, Nakamura S, Sakai K, Kikuchi A, Aoyagi T, Okano T, Polym. Gels Netw., 6, 333 (1988) 
  23. Ohya S, Sonoda H, Nakayama Y, Matsuda T, Biomaterials, 26, 655 (2005) 
  24. Ju HK, Kim SY, Kim SJ, Lee YM, J. Appl. Polym. Sci., 83(5), 1128 (2002) 
  25. Ju HK, Kim SY, Lee YM, Polymer, 42(16), 6851 (2001) 
  26. Kim JH, Lee SB, Kim SJ, Lee YM, Polymer, 43(26), 7549 (2002) 
  27. Kim MR, Park TG, J. Control. Release, 80, 69 (2002) 
  28. Pietrucha K, Int. J. Biol. Macromol., 36, 299 (2005) 
  29. Kim SY, Cho SM, Lee YM, Kim SJ, J. Appl. Polym. Sci., 78(7), 1381 (2000) 
  30. Bae YC, Lander SM, Soane DS, Prauzsnitz M, Macromolecules, 24, 4403 (1991) 
  31. Liu H, Yin Y, Yao K, Ma D, Cui L, Cao Y, Biomaterials, 25, 3523 (2004)