화학공학소재연구정보센터
Thin Solid Films, Vol.495, No.1-2, 394-397, 2006
Modelling the effects of mesostructure on electronic applications of polymer thin layers
There is considerable experimental evidence that the microstructure has important consequences for polymer-based electronic and optoelectronic applications, but few theoretical and computational models account for it. We produced several realisations of polymer networks exhibiting specific arrangements of C4n+2 H2n+4 molecules at the mesoscopic scale and we carried out computer experiments in which bipolar charge carriers were injected in the polymer system from the appropriate electrodes. Our results show that polymer microstructures resulting from different arrangements of polymer molecules have significant effects on the competition. between charge trapping, current transport and recombination within the polymer layer. It was found that current efficiency increases non-linearly with the external applied electric field, the effect being more pronounced for molecular orientations parallel to the electrode surface. In contrast, recombination efficiency shows an opposite behaviour since no significant charge accumulation within the polymer layer is predicted. However, the space-charge effects due to electrons and holes are responsible for most of the recombination events not occurring in neither long or short chains. (c) 2005 Elsevier B.V. All rights reserved.