화학공학소재연구정보센터
Chemical Engineering & Technology, Vol.28, No.12, 1529-1539, 2005
Representation of adsorption data for the isopropanol-water system using neural network techniques
Molecular sieves and palm stone, a newly developed bio-based adsorbent, were used to break ail azeotropic isopropanol-water system via ail adsorptive distillation process. Equilibrium data at different inlet water contents are presented. The data were obtained with a fixed bed adsorptive distillation process using Type 3A and Type 4A molecular sieves and palm stone. An artificial neural network (ANN) technique was used to represent the isotherm equilibrium data of this azeotropic system. The ANN prediction results were compared with the Guggertheim-Anderson-de Boer (GAB) isotherm model. It was possible to break the isopropailol-water azeotrope using this separation process with the adsorbents used ill this work. Water uptake increases as the water content in the feed decreases from 16 % to tO %. Although the GAB isotherm model was found to be applicable to the water vapor sorption data oil the adsorbents examined, the ANN model fitted the equilibrium data more efficiently.