화학공학소재연구정보센터
Journal of Physical Chemistry A, Vol.109, No.51, 11941-11955, 2005
Radical-molecule reactions HCO/HOC + C2H2: Mechanistic study
A detailed computational study is performed on the unknown radical-molecule reactions between HCO/ HOC and acetylene (C2H2) at the CCSD(T)/6-311G(2d,p)//B3LYP/6-311G(d,p)+ZPVE, Gaussian-3//B3LYP/ 6-31G(d), and Gaussian-3//MP2(full)/6-31G(d) levels. For the HCO + C2H2 reaction, the most favorable pathway is direct C-addition forming the intermediate HC=CHCH=O followed by a 1,3-H-shift leading to H2C=CHC=O, which finally dissociates to the product C2H3 + CO. The overall reaction barrier is 13.8, 10.5, and 11.3 kcal/mol, respectively, at the three levels. The quasi-direct H-donation process to produce C2H3 + CO with barriers of 14.0, 14.1, and 14.1 kcal/mol is less competitive. Thus only at higher temperatures could the HCO + C2H2 reaction play a role. In contrast, the HOC + C2H2 reaction can barrierlessly generate C2H3 + CO via the quasi-direct H-donation mechanism proceeding via a prereactive complex with OH (...) C-2 hydrogen bonding. This is suggestive of the potential importance of the HOC + C2H2 reaction in both combustion and interstellar processes. However, the direct C-addition channel is much less competitive. For both reactions, the possible formation of the intriguing interstellar molecules propadiene and propynal is also discussed. The present theoretical study represents the first attempt to probe the reaction mechanism between HOC and pi-systems. Future laboratory investigations on both reactions (particularly HOC + C2H2) are recommended.