Journal of Physical Chemistry B, Vol.109, No.50, 23905-23910, 2005
Photochemical interaction of polystyrene nanospheres with 193 nm pulsed laser light
The photochemical interaction of 193 nm light with polystyrene nanospheres is used to produce particles with a controlled size and morphology. Laser fluences from 0 to 0.14 J/cm(2) at 10 and 50 Hz photofragment nearly monodisperse I 10 nm spherical polystyrene particles. The size distributions before and after irradiation are measured with a scanning mobility particle sizer (SMPS), and the morphology of the irradiated particles is examined with a transmission electron microscope (TEM). The results show that the irradiated particles have a smaller mean diameter (similar to 25 nm) and a number concentration more than an order of magnitude higher than nonirradiated particles. The particles are formed by nucleation of gas-phase species produced by photolytic decomposition of nanospheres. A nondimensional parameter, the photon-to-atom ratio (PAR), is used to interpret the laser-particle interaction energetics.