Rheologica Acta, Vol.45, No.3, 268-280, 2006
Transient shear and elongational behavior of blends of PET with a LCP
Blends of polyethylene terephthalate (PET) with a liquid crystalline polymer (LCP) and a compatibilizer were produced by twin screw extrusion and injection molding. Transesterification and compatibilization studies were made in a torque rheometer. The morphology of the injection-molded plaques was studied by scanning electron microscopy. The blends shear growth function (eta(+)(t, gamma)) was measured in a cone and plate rheometer. The elongational growth function (eta(+)(epsilon, t)) was measured in a modified rotational rheometer. Transesterification was observed in the PET/LCP/compatibilizer 95/5/0 blend. The injection-molded plaques displayed the usual "skin-core" morphology. All the blends were highly shear-thinning, even at low shear rates; thus, a zero-shear viscosity could not be calculated. The compatibilized blend had the highest shear viscosity of all the blends, confirming the strong PET/LCP interphase and the effectiveness of the compatibilizing agent. On the other hand, the 90/10/0 blend had the lowest shear viscosity. All the blends showed strain softening behavior, similar to the PET. The 90/10/0 blend had the highest elongational growth function, while the 95/5/0 had the lowest. The compatibilized blend had an intermediate behavior between both blends.
Keywords:liquid crystalline polymer;poly(ethylene terephthalate);blends;elongational viscosity;shear viscosity