화학공학소재연구정보센터
Langmuir, Vol.22, No.4, 1680-1687, 2006
Characterization of a novel water-soluble 3,4,9,10-perylenetetracarboxylic diimide in solution and in self-assembled zirconium phosphonate thin films
The properties of N,N'-bis(2-phosphonoethyl)-3,4,9,10-perylenetetracarboxylic diimide (PPDI), a water-soluble perylene dye, have been studied in solution and in thin films. Absorption spectra showed that PPDI exists in the monomeric form in water/ethanol (1:1) and water/dimethyl sulfoxide (DMSO) (3:7) mixtures, but forms dimers in water and higher aggregates in ethanol. The PPDI monomer is highly fluorescent, in contrast to the dimers and aggregates, which are nonfluorescent. The monomer/dimer equilibrium was conveniently followed in a water/ethanol (7:3) mixture by varying the dye concentration. An equilibrium constant of K = 1.25 x 10(5) M-1 was estimated for the dimerization process in this solvent mixture. The addition of cetyl trimethylammonium bromide (CTAB), a cationic surfactant, to aqueous solutions of PPDI resulted in the dissociation of the dimers, showing that the dye was incorporated into the micellar phase. Self-assembled thin films of PPDI were grown on both silica gel particles and flat surfaces, using zirconium phosphonate chemistry. The growth of multilayered films on flat surfaces was monitored by ellipsometry (silicon substrates) and UV/Vis spectroscopy (quartz slides), and was linear with the number of deposition cycles. No fluorescence was detected from the PPDI films, and the absorption spectra of the films were quite similar to the spectrum of the compound in ethanol, indicating that the dye molecules were stacked in the films. Mixed monolayers containing PPDI and N,N'-bis(2-phosphonoethyl)-1,4,5,8-naphthalenediimide (PNDI) on quartz were also prepared. Monolayers obtained by codeposition from solutions containing both PPDI and PNDI were richer in PPDI, even when the solution contained a large excess of the naphthalene derivative, showing that pi-stacking of PPDI is an important driving force in the formation of the films.