화학공학소재연구정보센터
Journal of Industrial and Engineering Chemistry, Vol.12, No.1, 1-11, January, 2006
The Molecular Layering Nanotechnology: Basis and Application
E-mail:
The Molecular Layering (ML) method is based on the chemisorptions of reagents on a solid substrate surface. The main idea of realization of the ML method is consists in consecutive escalating of monolayers of structural units of the set chemical composition on a surface of solid matrix [1,2]. The ML technique gives the possibility to form a wide variety of nanolayers (mono- and multilayer, multicomponent layers) on the surface of different solids (organic and inorganic powders, fibres, films etc.) with any geometrical form. Four basic effects characterise a new technology [3]. They are (1) monolayer effect (ME), i.e. sharp changes in matrix properties after obtaining of 1~4 mono-layers of new structural units; (2) effect of matrix overlapping (EME), i.e. the physical coverage of the surface of solid (formed layer screens virtually the surface); (3) effect of mutual co-ordination of matrix surface structure and formed nanolayer (EMC); (4) effect of the multicomponent system (MS), for example it can be a synergistic composition, polyfunctional coatings. The general directions of the application of ML method can be defined from these effects in product of such materials as adsorbents, catalysts, polymeric, metal, composition and other materials. The ML method can be important in optimization of layer composition and thickness (for example when kernel pigments and fillers are produced), for intensification of chemical solid reactions, in sintering of ceramic powders etc.
  1. Koltsov SI, Aleskovskii VB, Zh. Fizich. Khim., 42, 1210 (1968)
  2. Aleskovskii VB, Zh. Prikl. Khim., 47, 2145 (1974)
  3. Malygin AA, Malkov AA, Dubrovenskii SD, The chemical basis of surface modification technology of silica and alumina by molecular layering method. In Book: Adsorption on New and Modified Inorganic Sorbents. Ed. by A. Dabrowski and V. A. Tertykh. In serie "Studies in Surface Science and Catalysis"-Amsterdam Netherlands: Elsevier, 99, 213 (1996)
  4. Aleskovskii VB, Theisis, Technological Institute, Leningrad (1952)
  5. Koltsov SI, Aleskovskii VB, in: Abstracts of Sci.-Tech. Conf., Goskhimizdat, Leningrad, 37 (1963)
  6. Volkova AN, Malygin AA, Smirnov VM, Koltsov SI, Aleskovskii VB, Zhurn. Obshch. Khimii, 42, 1431 (1972)
  7. Aleskovskii VB, Stoichiometry and Synthesis of Solid Compounds, Nauka, Leningrad, 1976 (in Russian)
  8. Aleskovskii VB, Chemistry of Solid Substances, Vysshaya Shkola, Moscow, 1978 (in Russian)
  9. Suntola T, Antson MJ, "Solid state" Tyypinen lonisolektivinen Electrod; ja sen Valmistusmenetelma, Finland Patent No.51742 (1977)
  10. Geyer-Lippman, J., Verbindungen von Vanadium auf Silicagel: Darstellung, Struktur und Reakxivitat,, Dissertation, Berlin: Free University of Berlin (1981)
  11. Horvath B, Strutz J, Geyer-Lippmann, Horvath EG, Z. Anorg. Allg. Chem., 483, 181 (1981)
  12. Ohlmann G, Izv. Khim. Bolg. AN, 13, 48 (1980)
  13. Suntola T, in: Atomic Layer Epitaxy Materials. Science Reports, HollandAmsterdam, Dec., 4, 261 (1989)
  14. Van Der Voort P, Vansant EF, Ceram. Int., 17 (1984)
  15. Zhaobin W, Qin X, Xiexian G, Appl. Catal., 63, 305 (1990) 
  16. Inumaru K, Okuhara T, Misono M, J. Phys. Chem., 95, 4826 (1991)
  17. Lisichkin GV, (de.), Modified Silicas in Sorption, Catalysis and Chromatorgraphy, Khimia, Moscow, 1986 (in Russian)
  18. Errnakov YI, Zakharov AA, Kuznetsov BN, Immobilized Complexes onOxide Carriers in Catalysis, Nauka, Novosibirsk, 1980 (in Russian)
  19. Lystsov AI, Shcherbin NI, Lakokrasochnye materialy i ikh primenenie, 1, 48 (1980)
  20. Puurunen R, J. Appl. Phys., 97, 121301 (2005)
  21. Binning G, Quate CF, Gerber C, Phys. Rev. Lett., 56, 930 (1986)
  22. Nichugovskii GF, Opredelenie vlazhnosti khimicheskikh veshchesn (Analysis of Moisture of Chemical Substances), Leningrad: Khimiya (1977)
  23. USSR Inventor's Certificate no.285 336
  24. Malkin, L. Sh., A. I. Filenko, L. M. Mozolyako, et al., Kholod. Tekli., 11, 17 (1972)
  25. USSR Inventor's Certificate no.568 894
  26. Polyakov AY, Samarin AM, Usp. Khim., 5, 565 (1950)
  27. Malygin AA, The molecular layering method as a basis of chemical nanotechnology. In Book Natural Microporous Materials in Environmental Technology. : Kluwer Academic Publishers, 487 (1999)
  28. Beljakov AV, Zsharikov EV, Malygin AA, Chemical methods in nanotechnology. In Book: Chemical technologies. Ed. By Academician P.D. Sarkisov. -STP Scientific investigations of High School in priority-driven fields of Science and Techniquec. -M., RChTU. 2003. 680 p. (pp. 551~620)
  29. Trifonov SA, Sosnov EA, Malygin AA, J. Appl. Chem., 77, 1872 (2004)
  30. Van Weser, Phosphorus and his combinations (Inostrannaya Literatura, Moscow, 1962)
  31. Trifonov SA, Malygin AA, Plastical masses., 5, 37 (1997)
  32. Kodolov VI, The Flame-Retardants of Polymer Materials (Khimia, Moscow, 1980)
  33. Malkov AA, Sosnov EA, Malygin AA, J. Appl. Chem., 78, 881 (2005)
  34. Dolgushev NV, Malkov AA, Malygin AA, Suvorov SA, Shchukarev AV, Beljaev AV, Bykov VA, Thin Solid Films, 293(1-2), 91 (1997)
  35. Ishutina ZN, Gusarov VV, Malkov AA, Firsanova TV, Malygin AA, J. Inorg. Chem., 44, 16 (1999)
  36. Den Bears SP, Dapkus PD, Cryst. Growth., 98, 195 (1989) 
  37. Lakomaa EL, Haukka S, Suntola T, Appl. Surf. Sci., 60, 742 (1992)
  38. Haukka S, Lakomaa EL, Jylka O, Langmuir, 9, 3497 (1993)
  39. Nishizava J, J. Electrochem. Soc., 132, 1197 (1985)
  40. Alekhin AP, Elektron. Prom-st., 2, 3 (1990)
  41. Leboda R, Turov VV, Marcyniak AA, Malygin AA, Malkov, Langmuir, 15, 8441 (1999)
  42. Gun'ko VM, Leboda R, Marciniak M, Grzegorczyk W, Skubiszewska-Zieba J, Malygin AA, Malkov AA, Langmuir, 16(7), 3227 (2000)
  43. Leboda R, Marciniak M, Gunko VM, Grzegorczyk W, Malygin AA, Malkov AA, J. Colloid Interface Sci., 167, 275 (2000)
  44. Malygin AA, Synthesis of Multicomponent Oxide Low-Dimension Systems on Surface of Porous Silicon Dioxide Using Molecular Layering Method. XOX., T. 72, BbIII.4,617~632 (2002)
  45. Maylgin AA, Smirnov VM, Solid State Technol., 14 (2002)