화학공학소재연구정보센터
Polymer(Korea), Vol.30, No.2, 158-161, March, 2006
내열성 플라스틱 광섬유 코어재료의 열적 및 광학적 성질
Thermal and Optical Properties of Heat-Resistant Core Materials in Plastic Optical Fiber
E-mail:
초록
본 연구에서는 고온 고압하의 반응기내에서 일차 아민(primary amine)과 PMMA의 이미드화 반응을 유도하여 내열성 플라스틱 광섬유(plastic optical fiber, POF) 재료인 polyglutarimide(PGI)를 제조하였다. 에틸 아민과 이소프로필 아민, 두 종류를 사용하였으며, 반응시 함량을 다르게 하여 합성한 후 PGI의 여러 가지 물성을 비교하였다. 1H NMR과 FTIR을 사용하여 PGI의 이미드 전환율을 비교하였고, DSC와 TGA를 통해 열적 특성을 조사하였다. 에틸 아민을 사용하여 합성된 PGI 화합물들이 높은 이미드 전환율을 보이면서 향상된 내열성을 나타내었다. POF재료로서 필수적인 광학적 성질은 분광광도계와 아베굴절계로 굴절률과 광 투과율을 조사하였다. 대부분의 PGI는 PMMA수준의 광 투과율을 유지하였으며, 보다 높은 굴절률을 나타내었다. 이것은 합성된 PGI가 POF 코어물질로써 우수한 광 효율 및 내열성 향상에 기여할 수 있음을 의미한다.
Recently the application of plastic optical fiber (POF) in automotives and planes demands the heat-resistant and high refractive index core materials. We synthesized polyglutarimides (PGIs) via imidization of PMMA with primary amines under high pressure and high temperature and investigated thermal and optical properties by varying the molar ratio of amines and the type of amines (ethyl amine vs. isopropyl amine). The degree of imidization was calculated based on the peak intensity in 1H NMR and FTIR. We found that the glass transition temperature ( Tg ) of PGIs increased over 30 ℃ compared to the traditional core materials in POF, PMMA, and they are stable up to 300∼400 ℃. PGIs synthesized with ethyl amine show the better heat resistance than those with isopropyl amines. Additionally, they show the comparable transparency and higher refractive index than PMMA. It implies that they can be utilized as the excellent photo-efficient and heat-resistant core materials in POF.
  1. Park M, Kim JK, Lee MS, Prospect. Ind. Chem., 3(5), 27 (2000)
  2. Daum W, Krauser J, Zamzow PE, Ziemannn O, POF-Polymer Optical Fibers for Data Communication, Springer., Ch3, pp 73 (2001)
  3. Jin MY, Park K, Chung HK, Polym. Sci. Technol., 13(2), 180 (2002)
  4. Jung MJ, Kim YF, Kim JB, Lee MS, Jin MY, Park M, J. of the Korea Filber Society., 40, 335 (2003)
  5. Sasaki I, Nishida K, Morimoto M, Anzal H, Makino H, U.S. Patent, 4,908,402 (1990)
  6. Zidan HM, Abu-Elnader M, Physica B, 355, 308 (2005) 
  7. Takezawa Y, Ohara S, J. Appl. Polym. Sci., 49, 169 (1993) 
  8. Tampellini E, Canova L, Cinquina P, Gianotti G, Polymer, 35(2), 367 (1994) 
  9. Trinka TM, Grubbs RH, Accounts Chem. Res., 34, 18 (2001) 
  10. Kita Y, Kishino K, Nakagawa K, J. Appl. Polym. Sci., 63(8), 1055 (1997) 
  11. Madan R, Srivastava , Anand RA, Varma IK, Prog. Polym. Sci, 23, 663 (1998)
  12. Cherdron H, Brekner MJ, Osan F, Angew. Chem.-Int. Edit., 223, 121 (1994)
  13. Lee YC, Choi HW, Chin IJ, Won HY, Kim YS, Polym.(Korea), 3, 76 (1995)
  14. Kopchik RM, U.S. Patent 4,246,374 (1981)
  15. Hallden-Abberton MP, Glen M, U.S. Patent 1,874,824 (1989)
  16. Jerman RE, Freed WT, Cohen LA, Buhse LF, Miller GW, U.S. Patent 5,159,058 (1992)
  17. Isao S, Kozi N, Masaharu F, U.S. Patent 5,132,371 (1992)
  18. Butler GB, J. Polym. Sci. A: Polym. Chem., 38(19), 3451 (2000) 
  19. Technology roadmap, ITEP, 23,174 (2001)
  20. Anzai H, Makino H, Sasaki I, Nishida K, Morimoto M, U.S. Patent 4,745,159 (1988)
  21. Brown CE, Wilkie CA Smukalla J, Cody RB, Kinsinger JA, J. Polym. Sci. A: Polym. Chem., 24, 1297 (1986)