화학공학소재연구정보센터
Journal of the Korean Industrial and Engineering Chemistry, Vol.17, No.2, 217-222, April, 2006
Methacryloyl기를 함유한 가용성 폴리이미드의 합성과 감광 특성
Preparation and Properties of Soluble Polyimide with Methacryloyl Group
E-mail:
초록
폴리이미드는 높은 열안정성, 우수한 기계적, 전기적 성질을 가지고 있어 많은 연구가 진행되어 왔지만, 대부분의 유기용매에 불용인 관계로 그 용도가 제한되어 있다. 본 연구에서는 방향족 디아민인 2,2,-bis(3-amino-4-hydroxyphenyl) hexafluoropropane (BAPAF)와 3,3,-diamino-4,4- dihydroxybyphenyl (HAB)를 사용하고 방향족 디안하이드라이드인 4,4-(hexafluoroisopropylidene)diphthalic dianhydride (6FDA), pyromellitic dianhydride (PMDA), 4,4-oxydiphthalic dianhydride (OPDA), 3,3,4,4-benzophenone tetracarboxylic dianhydride (BTDA) 및 3,3,4,4-diphenylsulfone tetracarboxylic dianhydride (DSDA)를 사용하여 가용성 폴리이미드를 합성하였다. 폴리이미드의 성질은 NMR, FR-IR 및 TGA를 이용하여 조사하였으며, 유전상수는 축전용량을 측정하여 계산하였다. 히드록시기를 포함한 폴리이미드와 methacryloyl chloride를 반응시켜 감광성 폴리이미드를 합성하고, photolithography기술을 이용하여 micro- 패턴을 형성하였다.
Polyimides have been investigated extensively and used widely over the past three decades because of their high performance properties such as excellent thermal, mechanical, and electrical properties. Polyimides are difficult to be processed because of the aromatic moieties, imide group, and insoluble nature in most organic solvents. The soluble polyimides were synthesized from 2,2,-bis(3-amino-4-hydroxyphenyl) hexafluoropropane (BAPAF) and 3,3,-diamino-4,4-dihydroxybyphenyl (HAB) as aromatic diamines and 4,4-(hexafluoroisopropylidene)diphthalic dianhydride (6FDA), pyromellitic dianhydride (PMDA), 4,4-oxydiphthalic dianhydride (OPDA), 3,3,4,4-benzophenone tetracarboxylic dianhydride (BTDA) and 3,3,4,4-diphenylsulfone tetracarboxylic dianhydride (DSDA) as aromatic dianhydrides. The polyimides were characterized by NMR, FR-IR, TGA and the dielectric constant of the obtained polyimides was calculated from storage of electro-capacity. A novel photosensitive polyimide was synthesized by the reaction of polyimide, containing hydroxyl group and methacryloyl chloride using triethylamine. The good micro-pattern was obtained with photosensitive polyimide from the photolithographic technique.
  1. Wilson D, Stengenberger HD, Hergenrother PM, Polyimide, Chapman & Hall, New York (1990)
  2. Denton DD, Day DR, Prioref DF, Senturia SD, Anolick ES, Scheider D, J. Electron. Mater., 14, 119 (1985)
  3. Laesen RA, J. Res. Dev., 24, 268 (1980)
  4. Wilson AM, IBM. Thin Solid Films, 83, 145 (1981) 
  5. Sacher E, Susko JR, J. Appl. Polym. Sci., 26, 679 (1981) 
  6. Harris FW, Lin SH, Li F, Cheng SZD, Polymer, 22, 5049 (1996) 
  7. Koo SY, Lee DH, Choi HJ, Choi KY, J. Appl. Polym. Sci., 61(7), 1197 (1996) 
  8. Li FM, Ge JJ, Honigfort PS, Fang S, Chen JC, Harris FW, Cheng SZD, Polymer, 40(18), 4987 (1999) 
  9. Ahne H, Ranier L, Rubner R, Polym. Adv. Technol., 4, 217 (1993) 
  10. Chen TA, Jen AK, Cai YM, Macromolecules, 29(2), 535 (1996) 
  11. Lee DH, Koo SY, Lee HS, Kim WS, Min KE, Park LS, Seo KH, Kang IK, Choi HJ, J. Appl. Polym. Sci., 85(1), 38 (2002) 
  12. Stephen ZD, TRIP, 1, 243 (1993)
  13. Stoakley DM, Stclair AK, Croall CI, J. Appl. Polym. Sci., 51(8), 1479 (1994) 
  14. Li S, Karasz FE, J. Appl. Polym. Sci., 47, 753 (1993) 
  15. Kumar D, J. Polym. Sci. A: Polym. Chem., 18, 1375 (1980)
  16. Sacher E, J. Macromol. Sci.-Phys., 25, 405 (1986)
  17. Denton DD, Proceedings of ISA Moisture Humidity Conferences, Washington DC, 505 (1985)
  18. Mercer FW, Goodman TD, Polym. Prepr, 32, 189 (1991)
  19. Hougham G, Tesoro G, Viehbeck A, Chapplesokol JD, Macromolecules, 27(21), 5964 (1994) 
  20. Shingh JJ, Eftekhari A, NASA Tech. Memo., 86431, 1 (1985)