Journal of Physical Chemistry B, Vol.110, No.1, 130-135, 2006
High-yield synthesis of single-wall carbon nanotubes on MCM41 using catalytic chemical vapor deposition of acetylene
High-quality single-wall carbon nanotubes (SWNTs) with narrow diameter distribution have been grown on Fe/Co-loaded MCM41 by using acetylene as the carbon source within a short reaction period, typically 10 min or less. The optimum temperature for SWNTs synthesis is 850 degrees C. Longer reaction time (i.e., 30 min) favors the formation of multiwall carbon nanotubes (MWNTs) and graphitic carbon. When the reaction time is reduced to less than 10 min, formation of MWNTs and graphitic carbon is greatly suppressed, and high-quality SWNTs dominates the yield. The surface of the as-grown SWNTs is found to be free from amorphous carbon, as observed from high-resolution transmission electron microscope (HRTEM) analysis. Raman spectral data show a G/D ratio above 10, indicating that the as-grown SWNTs have very few defects. Furthermore, radial breathing mode (RBM) analysis reveals that the diameter distribution of the current SWNTs is narrow and ranges from 0.64 to 1.36 nm.