AAPG Bulletin, Vol.90, No.2, 237-260, 2006
Geologic evolution and aspects of the petroleum geology of the northern East China Sea shelf basin
Analysis of multichannel seismic reflection profiles reveals that the northern East China Sea shelf basin experienced two phases of rifting, followed by regional subsidence. The initial rifting in the Late Cretaceous created a series of grabens and half grabens, filled by alluvial and fluviolacustrine deposits. Regional uplift and folding (Yuquan movement) in the late Eocene-early Oligocene terminated the initial rifting. Rifting resumed in the early Oligocene, while alluvial and fluviolacustrine deposition continued to prevail. A second phase of uplift in the early Miocene terminated the rifting, marking the transition to the postrift phase. The early postrift phase (early Miocene-late Miocene) is characterized by regional subsidence and westward and northwestward marine transgression. Inversion (Longjing movement) in the late Miocene interrupted the postrift subsidence, resulting in an extensive thrust-fold belt in the eastern part of the area. The entire area entered a stage of regional subsidence again and has become a broad continental shelf. Source rocks include synrift lacustrine facies, fluvial shales, and coal beds. Synrift fluvial, lacustrine, and deltaic deposits, postrift littoral and/or shallow-marine sandstones, and fractured basement have the potential to provide reservoirs. Various types of hydrocarbon traps (e.g., faulted anticlines, overthrusts, rollover anticlines, faults, unconformity traps, combination structural-stratigraphic traps, weathered basement, and stratigraphic traps) are recognized, but many of these traps have not been tested.