Inorganic Chemistry, Vol.45, No.3, 1243-1251, 2006
Structural and texture evolution with temperature of layered double hydroxides intercalated with paramolybdate anions
Paramolybdate-LDHs with MgAl or ZnAl cations within the layers have been prepared by the ion-exchange method from hydrotalcites with different interlayer anions (OH-, NO3-, and terephthalate). The samples and the oxides obtained after their calcination were characterized by element chemical analysis, PXRD, FT-Raman spectroscopy, thermal analysis (TG/DTA), N-2 adsorption at -196 degrees C, and SEM. The results show that layered solids with hydrotalcite-type structure were obtained in which the interlayer space is occupied by heptamolybdate with a small amount of MoO4(2-) units formed through hydrolysis of the polyanion; both oxomolybdenum species undergo a progressive distortion of the octahedral units from 50 degrees C but are roughly stable up to 250 degrees C as a consequence of the interaction between the polyanion and the brucite-like layers. This distortion is responsible for the observed decrease in the height of the gallery for samples heated in the temperature range, 50-250 degrees C, with respect to the original samples. Rehydration of the calcined solids allows recovering of their original structures and the initial values for the gallery heights. Calcination between 300 and 400 degrees C gives rise to a collapse of the layered structure, and amorphous phases are formed, in which molybdenum is both octahedrally and tetrahedrally coordinated. Crystalline magnesium and zinc molybdates (MgMoO4 and ZnMoO4) are formed at 450 and 600 degrees C, respectively. All solids have some microporosity, which decreases with increasing the calcination temperature.