화학공학소재연구정보센터
Journal of Applied Electrochemistry, Vol.36, No.2, 153-160, 2006
Protection of stainless steel by polyaniline films against corrosion in aqueous environments
Polyaniline (PANI) thin films were electrochemically deposited by cyclic voltammetry on stainless steel electrode previously covered by a thin film of polyvinyl acetate (PVAc). The corrosion resistance of PANI covered stainless steel substrates was estimated by using potentiodynamic polarization curves and its linear polarization resistance (LPR) was measured in 0.5 M H2SO4, 0.5 M NaCl and 0.5 M NaOH aqueous solutions at room temperature. The results indicate that the PANI-PVAc films did improve the corrosion resistance of the stainless steel in NaOH, behaving even worst, in the case of PANI film, than the uncoated substrate. In H2SO4 both PANI and PANI-PVAc coatings gave good protection for the stainless steel electrode, with a slightly better performance of PANI-PVAc than PANI. In NaCl solution both PANI and PANI-PVAc films provided a good protection against corrosion. The better performance of PANI-PVAc coatings for corrosion protection in basic media may be due to its major chemical stability compared to simple PANI films, which lose their conductivity in high pH solutions. The E (corr) (free corrosion potential) value of the coated substrate was in the passive region of the uncoated substrate in acidic environment but in the active region in neutral or basic environment.