Journal of Applied Polymer Science, Vol.100, No.2, 1465-1470, 2006
Mineralization of hydroxyapatite on a polymer substrate in a solution supersaturated by polyelectrolyte
In this article, a new method to construct composites of hydroxyapatite (HAP) and polymer material is introduced. A previously developed method for mineralization of CaCO3 on a polymer substrate was applied to HAP. A solution that contained Ca2+, PO43-, and OH- ions was supersaturated with polyacrylic acid (PAA) that, at the same time, formed a polymer complex with the substrate, a polyvinyl alcohol (PVA) film, at the substrate surface. In this thin surface layer, nucleation of HAP took place. Subsequently, the disklike domains of HAP that were generated spread until they covered the PVA film surface. By regulating the pH of the supersaturated solution at around 7.4, the domain size decreased and the quantity of deposited material increased. Approximately 20 mg of HAP coating was obtained on a PVA film of 1 cm radius when the film was soaked in single 200 mL batch of the supersaturated solution for 21 days. The junction between HAP layer and PVA substrate film was found to be very firm. When a crosslinked PVA/PAA was used as the substrate, the film swelled in the supersaturated solution to form a hydrogel. Then mineralization took place within the gel, and a transparent monolithic composite of HAP and the polymer network was obtained. In 13 days, the weight increase was 29 mg, which corresponded to a 71 wt % HAP mineralization ratio of the composite. By changing crosslinking degree and HAP mineralization ratio, the flexibility of composite will be controlled in a wide range.