화학공학소재연구정보센터
IEEE Transactions on Automatic Control, Vol.51, No.3, 498-503, 2006
Output regulation of uncertain nonlinear systems with nonlinear exosystems
An adaptive control algorithm is proposed for output regulation of uncertain nonlinear systems in output feedback form under disturbances generated from nonlinear exosystems. A new nonlinear internal model is proposed to generate the desired input term for suppression of the disturbances. The proposed internal model design is based on boundedness of the disturbance, high gain design and saturation. It is capable to tackle disturbances in any specified initial conditions. Some uncertainties in the systems are allowed, provided that they do not affect the desired feedforward control term, and they are tackled by using nonlinear dominant functions and an adaptive control coefficient. The proposed control algorithm ensures the global convergence of the state variables to the invariant manifold, which implies that the measurement or the tracking error approaches to zero asymptotically.