화학공학소재연구정보센터
International Journal of Heat and Mass Transfer, Vol.49, No.3-4, 594-600, 2006
Film condensation in presence of non-condensable gases over horizontal tubes with progressively increasing radius of curvature in the direction of gravity
A theoretical study is executed to investigate the simultaneous influences of reduction in heat transfer rate on account of condensation in presence of non-condensables and its augmentation by the geometry of an horizontal tube surface with increasing radius of curvature in the direction of gravity. The tube surface profile considered for the present work is an equiangular spiral described in a polar form as: R = ae(m0) (a and m being parametric constants). It is observed that a very small bulk concentration (even less than 1%) of the non-condensable gas reduces considerably the heat transfer coefficient. However, there is an enhancement in heat transfer coefficient for condensation over a polar tube surface, as compared to that over a circular tube surface. This enhancement in heat transfer coefficient, with an increase in the value of m (a surface profile parameter), in presence of non-condensables is more than the corresponding proportional enhancement in the same in absence of any non-condensable species. (c) 2005 Elsevier Ltd. All rights reserved.