Journal of Physical Chemistry A, Vol.110, No.10, 3605-3613, 2006
Shock tube pyrolysis of 1,2,4,5-hexatetraene
1,2,4,5-Hexatetraene (1245HT) is, according to theory, a key intermediate to benzene from propargyl radicals in a variety of flames; however, it has only been experimentally observed once in previous studies of the C3H3 + C3H3 reaction. To determine if it is indeed an intermediate to benzene formation, 1245HT was synthesized, via a Grignard reaction, and pyrolysized in a single-pulse shock tube at two nominal pressures of 22 and 40 bar over a temperature range from 540 to I 180 K. At temperatures T < 700 K, 1245HT converts efficiently to 3,4-dimethylenecyclobutene (34DMCB) with a rate constant of k = 10(10.16) x exp(-23.4 kcal/RT), which is in good agreement with the one calculated by Miller and Klippenstein. At higher temperatures, various C6H6 isomers were generated, which is consistent with theory and earlier experimental studies. Thus, the current work strongly supports the theory that 1245HT plays a bridging role in forming benzene from propargyl radicals. RRKM modeling of the current data set has also been carried out with the Miller-Klippenstein potential. It was found that the theory gives reasonably good predictions of the experimental observations of 1245HT, 1,5-hexadiyne (15HD), and 34DMCB in the current study and in our earlier studies of 15HD pyrolysis and propargyl recombination; however, there is considerable discrepancy between experiment and theory for the isomerization route of 1,2-hexadien-5-yne (12HD5Y) -> 2-ethynyl-1,3-butadiene (2E13BD)) -> fulvene.