화학공학소재연구정보센터
Journal of Physical Chemistry B, Vol.110, No.9, 4030-4038, 2006
Hydrothermal synthesis and characterization of nanorods of various titanates and titanium dioxide
The formation process of titania based nanorods during hydrothermal synthesis starting from an amorphous TiO2-nH(2)O gel has been investigated. Sodium tri-titanate (Na2Ti3O7) particles with a rodlike morphology were prepared by a simple hydrothermal process in the presence of a concentrated NaOH aqueous solution. The ion exchange reaction of the synthesized Na2Ti3O7 nanorods with HCl under ultrasonic treatment promotes a complete sodium substitution and the formation of H2Ti3O7 nanorods. Low-temperature annealing of the as-produced nanorods of Na2Ti3O7 and H2Ti3O7 leads to a loss of the layered crystal structure and the formation of nanorods of condensed framework phases-sodium hexa-titanate (Na2Ti6O13) and metastable TiO2-B phases, respectively. These transformations proceed without a significant change in particle morphology. The nanostructures were investigated by scanning electron microscopy (SEM), powder X-ray diffraction (XRD), the Brunauer-Emmett-Teller (BET) method, thermogravimetric analysis (TGA), and Raman spectroscopy. The structural defects of the synthesized nanorods were investigated by high-resolution electron microscopy. The presence of planar defects can be attributed to the exfoliation of the zigzag ribbon layers into two-dimensional titanates as well as to the condensation of the layers of TiO6 octahedra into three-dimensional frameworks.