Journal of Physical Chemistry B, Vol.110, No.10, 4605-4611, 2006
One-dimensional ZnO nanostructure arrays: Synthesis and characterization
One-dimensional ZnO nanostructure arrays such as nanowires, nanonails, and nanotrees, have been synthesized by oxygen assisted thermal evaporation of metallic zinc on a quartz substrate over a large area. Morphological evolution of ZnO nanostructures at different time scales and different positions of the substrates have been studied by electron microscopy. A self-catalyzed vapor-liquid-solid (VLS) process believed to be responsible for the nucleation and subsequently a vapor-solid process is operative for further longitudinal cess growth. The photoluminescence spectrum showed a weak UV and a broad green emission peak at 3.25 and 2.49 eV, respectively. The latter was attributed to the presence of zinc interstitial defects. Electrical resistivity as a function of temperature showed activated mechanisms to be present. The electrical response of the ZnO nanonail arrays to different gases (CO, NO2, and H2S) indicated that there could be possible application as gas sensors for this material.