화학공학소재연구정보센터
Journal of Physical Chemistry B, Vol.110, No.12, 6415-6422, 2006
Loose complexation of weakly charged microemulsion droplets and a polyelectrolyte
The effect of polyelectrolyte addition on the properties of an oil-in-water (O/W) microemulsion of weakly charged spherical micelles is studied. The 81 A radius O/W droplets in this system can be charged by the partial substitution of the nonionic surfactant by a cationic surfactant. The effect of the addition of poly(acrylic acid) (PAA), which is a charged pH-dependent polyelectrolyte, on the interactions between charged or noncharged droplets has been investigated using SANS. We have characterized the phase behavior of this pH-smart system as a function of the microemulsion and the polyelectrolyte concentration and the number of charges per droplet at three pH values: pH = 2, 4, 5, and 12. In particular, an associative phase separation due to the bridging of the droplets by the neutral PAA chains through H-bonds is observed with extremely low PAA addition at low pH. At the opposite, an addition of PAA at pH = 4.5 generates a strong repulsive contribution between neutral droplets. Electrostatic bonds between charged droplets and PAA. controlled by the number of charges per droplet, are responsible for a pH drift and then for an associative phase separation similar to that observed at low pH. Finally, at high pH, the creation of electrostatic bonds between fully charged PAA and charged droplets liberates sufficiently counterions in solution at high droplet charge density to screen the electrostatic interactions and to allow an associative phase separation.