화학공학소재연구정보센터
Journal of the American Chemical Society, Vol.128, No.12, 3946-3955, 2006
P-Hydrogen-substituted 1,3,2-diazaphosphdenes: Molecular hydrides
P-Hydrogen-substituted 1,3,2-diazaphospholenes 1 were prepared by an improved procedure from diazadienes and were characterized by spectroscopy and in one case by X-ray diffraction. A unique hydride-type reactivity of the P-H bonds was documented by extensive reactivity studies. Aldehydes and ketones were readily reduced to diazaphospholene derivatives of the corresponding alcohols, with alkyl-substituted ketones being converted at much lower rates than aldehydes or diaryl ketones. Reactions with the tetrachlorides of group 14 elements proceeded via hydride/chloride metathesis to give either partially chlorinated derivatives EHnCl4-n (n = 0-3 for E = C, Si) or HCl and phosphenium salts 16c[ECl3] (for E = Ge, Sn) which were characterized by spectroscopic and X-ray diffraction studies. Tin dichloride was readily reduced to the element. Reactions of 1c with the P-chloro-cliazaphospholene 3c and the salt 16c[OTf] allowed the first experimental detection of intermolecular exchange of a hydride, rather than a proton, between phosphine derivatives. Computational studies indicated that the hydride transfer between 1c and the cation 16c involves a transient H-bridged species with bonding properties similar to those of B2H7-. The preference for the formation of these bridged intermediates over P-P bonded phosphenium-phosphine adducts is attributed to the low electrophilicity of the diazaphospholenium cations and characterizes a novel reaction mode for phosphenium ions.