Macromolecules, Vol.39, No.5, 1821-1831, 2006
Morphological development of oriented isotactic polypropylene in the presence of a nucleating agent
The morphological development of sheared isotactic polypropylene (iPP) containing different amounts of sodium benzoate (SB) has been investigated using wide- and small-angle X-ray scattering techniques. The microbeam of synchrotron radiation allows us to gain, precisely and efficiently, the local morphology at a given position with a good spatial resolution. The morphological distributions such as crystallinity, fractions of alpha-form and beta-form crystals, crystal size, and orientation functions can therefore be well constructed through the shear field or temperature gradient. The distribution of crystallinity is changed from a U-shape without SB to an almost flat with SB, in company with a minimum fraction of a-form crystal and a maximum fraction of beta-form crystal. The epitaxial growth of branched lamellae in the presence of SB is confirmed from the orientation functions of two axes using wide-angle diffraction. The effect of SB on the molecular orientation is understood from the orientation function of c-axis and the azimuthal patterns of small-angle scattering. It is found that both the molecular orientation and the lamellar orientation of the alpha-form crystal are increased with increasing SB. The thickness of crystalline lamellae with respect to flow direction is found to increase with increasing SB in the whole range from shear zone to core center. A slight declination of crystalline lamellae has been observed in the presence of SB.