Journal of the American Chemical Society, Vol.128, No.14, 4734-4741, 2006
Stochastic modeling of CW-ESR spectroscopy of [60]fulleropyrrolidine bisadducts with nitroxide probes
In this work, we address the interpretation of continuous wave electron spin resonance (CW-ESR) spectra of fulleropyrrolidine bisadducts with nitroxide addends. Our approach is based on a definition of the spin Hamiltonian which includes exchange and dipolar interactions and on a complete numerical solution of the resulting stochastic Liouville equation, with inclusion of diffusive rotational dynamics. CW-ESR spectra are simulated for a series Of C-60 bisadducts made up of four trans isomers and the equatorial isomer. A nonlinear least-squares fitting procedure allows extraction directly from the available experimental spectra of a wide range of parameters, namely interprobe relative distances, diffusion tensors, and values of the exchange parameter J. Results are in good agreement with previous, more phenomenological estimates, proving that the combination of sensitive ESR spectroscopy based on multiple spin labeling with nitroxicle radicals and sophisticated modeling can be highly helpful in providing structural and dynamic information on molecular systems.