화학공학소재연구정보센터
Journal of Industrial and Engineering Chemistry, Vol.12, No.3, 395-400, May, 2006
Hydrothermal Decomposition Rate of Thiodiglycol in Supercritical Water
E-mail:
Supercritical water (SCW) has been used as a reaction medium, primarily for the oxidation of hazardous chemical wastes. It is essential to obtain the hydrothermal reaction kinetics and provide data for the intermediate products if the supercritical water oxidation process is to be developed. In this paper, the hydrothermal decomposition rate of thiodiglycol [(HOC2H4)2S, TDG], as the model compound of HD mustard, was investigated in an isothermal continuous tubular reactor under SCW conditions. The reaction temperatures ranged from 386 to 528°C and the residence times varied from 13 to 87 s at a fixed pressure of 25 MPa. The conversion of TDG was monitored by analyzing the total organic carbon (TOC) content of the liquid effluent samples. By using a first-order global power-law reaction rate expression, the hydrothermal decomposition rate of TDG, based on the TOC disappearance rate, in SCW was regressed from experimental data to a 95 % confidence interval. The resulting activation energy was 71.32±5.20 kJ/mol and the pre-exponential factor of the reaction was 5.57(±0.002)×103s-1.
  1. Munro NB, Talmage SS, Griffin GD, Waters LC, Watson AP, King JF, Hauschild V, Environ. Health Perspect., 107, 12 (1999)
  2. Nass LI, in Kirk-Othmer Encyclopedia of Chemical Technology, H. F. Mark, D. F. Othmer, C. G. Overberger, G. T. Seaborg, M. Grayson, and D. Eckroth, Eds., pp. 240, John Wiley, New York (1981)
  3. Robinson JR, Goldblat J, SIPRI Fact Sheet: Chemical Weapons I, Stockholm International Peace Research Institute (1984). (available on SIPRI website: http://www.sipri.se/cbw/research/factsheet-1984.html) (1984)
  4. Material Safety Data Sheet: Thiodiglycol, Sigma Chemical Company St Louis, MO (2004)
  5. Von Bremer P, Davis JH, in Kirk-Othmer Encyclopedia of Chemical Technology, H. F. Mark, D. F. Othmer, C. G. Overberger, G. T. Seaborg, M. Grayson, and D. Eckroth, Eds., pp. 948-949, John Wiley, New York (1981)
  6. CRC Handbook of Chemistry and Physics, 81st Edn., D. R. Lide, Ed., CRC Press, Boca Raton, Florida (2001)
  7. Watson AP, Griffin GD, Environ. Health Perspect., 259, 98 (1992)
  8. Lee KP, Allen HE, Environ. Toxicol. Chem., 17, 1720 (1998)
  9. Broll D, Kaul C, Kramer A, Krammer P, Richter T, Jung M, Vogel H, Zehner P, Angew. Chem.-Int. Edit., 38, 2998 (1999)
  10. Lee JH, Fosters NR, J. Ind. Eng. Chem., 5(2), 116 (1999)
  11. Veriansyah B, Kim JD, Lee JC, Lee YW, J. Hazard. Mater., B124, 119 (2005)
  12. Veriansyah B, Park TJ, Lim JS, Lee YW, J. Supercrit. Fluids, 33, 247 (2005)
  13. Lee HC, Kim JH, In JH, Lee CH, Ind. Eng. Chem. Res., 44(17), 6615 (2005)
  14. Baur S, Schmidt H, Kramer A, Gerber J, J. Supercrit. Fluids, 33, 149 (2005)
  15. Turner MD, Dissertation D, The University of Texas at Austin, Austin, TX (1993)
  16. Lachance R, Paschkewitz J, DiNaro J, Tester JW, J. Supercrit. Fluids, 16(2), 133 (1999)
  17. Veriansyah B, Kim JD, Lee JC, Ind. Eng. Chem. Res., 44(24), 9014 (2005)
  18. Veriansyah B, Kim JD, Lee JC, Lee YW, in Proc. Super Green 4th Int. Symp. Supercritical Fluid Technology for Energy, Environment, and Electronics Application, Taipei, Taiwan (2005)