화학공학소재연구정보센터
Korean Journal of Chemical Engineering, Vol.23, No.3, 505-511, May, 2006
Chemical structure and surface morphology of plasma polymerized-allylamine film
E-mail:
In this study, we conducted the plasma polymerization of allylamine using radio frequency (RF) glow discharge with continuous wave (CW) in order to make an organic thin film with an amine functional group retained. Allylamine as a monomer was deposited on a glass in a bell-jar type plasma reactor and polymerized to plasma-polymerized allylamine (PPAa). The parameter to control the property of plasma polymer was input power at other conditions remaining constant. The chemical structure and the surface morphology of plasma-polymerized allylamine (PPAa) film were characterized by contact angle measurement, Attenuated Total Reflection Fourier Transform Infrared (ATR-FTIR), X-ray Photoelectron Spectroscopy (XPS), Scanning Electron Microscopy (SEM). The property of PPAa film was highly dependent upon the plasma input power. The input power, which determines the plasma density, results in a property of PPAa thin film such as hydrophilicity, high retention of functionality of PPAa’s surface. Surface energy calculated by contact angle measurement indicated that increasing input power (from 30W to 90W) decreased the hydrophilic property of PPAa due to loss of amine functional group and high cross-linking. The increase of the energy causes the films to be harder. ATR-FTIR and XPS results showed that high input energy fragmented the amine group from monomer with increasing nitrogen atomic content and nitrile group. The high retention of amine groups seems mainly favored by low input power (<30 W). From thickness measurement using α-stepper, the deposition rates were 0.43, 0.83, 1.11, 1.37 nm/s at 30, 50, 70, 90W, respectively. The change of surface morphology of plasma-polymerized thin films was investigated after soaking the PPAa film into ethanol. Due to weak adhesion with substrate and internal stress in plasma polymer film, the surface morphology of PPAa film revealed some irregular network pattern.
  1. Aizawa H, Kurosawa S, Kobayashi K, Kashima K, Hirokawa T, Yoshimi Y, Yoshimoto M, Hirotsu T, Miyake J, Tanaka H, Mater. Sci. Eng. C-Biomimetic Supramol. Syst., 12, 49 (2000)
  2. Shard AG, Whittle JD, Beck AJ, Brookes PN, Bullett NA, Talib RA, Mistry A, Barton D, McArthur SL, J. Phys. Chem. B, 108(33), 12472 (2004) 
  3. Anma H, Yoshimoto Y, Warashina M, Hatanaka Y, Appl. Surf. Sci., 175, 484 (2001) 
  4. Beck AJ, Candan S, France RM, Jones FR, Short RD, Plasmas Polym., 3, 97 (1998) 
  5. Beck AJ, Candan S, Short RD, Goodyear A, Braithwaite NSJ, J. Phys. Chem. B, 105(24), 5730 (2001) 
  6. Biederman H, Slavinska D, Surf. Coat. Technol., 125, 371 (2000) 
  7. Biederman H, Hlidek P, Zemek J, Slavinska D, Jezek J, Zakouril P, Glosik J, Vacuum, 46, 1413 (1995) 
  8. Bogaerts A, Neyts E, Gijbels R, van der Mullen J, Spectroc. Acta Pt. B-Atom. Spectr., 57, 609 (2002)
  9. Bonizzoni G, Vassallo E, Vacuum, 64, 327 (2002) 
  10. Chu PK, Chen JY, Wang LP, Huang N, Mater. Sci. Eng. R-Rep., 36, 143 (2002) 
  11. da Silva MLP, Tan IH, Nascimento Filho AP, Galeazzo E, Jesus DP, Sens. Actuators B-Chem., 91, 362 (2003) 
  12. Favia P, DAgostino R, Surf. Coat. Technol., 98, 1102 (1998) 
  13. Gancarz I, Bryjak J, Bryjak M, Po niak G, Eur. Polym. J., 39, 1615 (2003) 
  14. Garrison MD, Luginbuhl R, Overney RM, Ratner BD, Thin Solid Films, 352(1-2), 13 (1999) 
  15. Hamerli P, Weigel T, Groth T, Paul D, Biomaterials, 24, 3989 (2003) 
  16. Han LC, Rajeshwar K, Timmons RB, Langmuir, 13(22), 5941 (1997) 
  17. Hynes AM, Shenton MJ, Badyal JP, Macromolecules, 29(12), 4220 (1996) 
  18. Ihara T, Kawamura S, Kiboku M, Iriyama Y, Prog. Org. Coat., 31, 133 (1997) 
  19. Kettle AP, Beck AJ, OToole L, Jones FR, Short RD, Compos. Sci. Technol., 57, 1023 (1997) 
  20. Kim J, Park H, Jung D, Kim S, Anal. Biochem., 313, 41 (2003) 
  21. Kuhn G, Retzko I, Lippitz A, Unger W, Friedrich J, Surf. Coat. Technol., 142, 494 (2001) 
  22. Kurosawa S, Aizawa H, Miyake J, Yoshimoto M, Hilborn J, Talib ZA, Thin Solid Films, 407(1-2), 1 (2002) 
  23. Mar MN, Ratner BD, Yee SS, Sens. Actuators B-Chem., 54, 125 (1999) 
  24. Martinu L, Poltras D, J. Vac. Sci. Technol. A, 18(6), 2619 (2000) 
  25. Muguruma H, Karube I, Tren. Anal. Chem., 18, 62 (1999) 
  26. Muguruma H, Hiratsuka A, Karude I, Anal. Chem., 72, 2671 (2000) 
  27. Otoole L, Beck AJ, Short RD, Macromolecules, 29(15), 5172 (1996) 
  28. Poll HU, Schreiter S, Surf. Coat. Technol., 93, 105 (1997) 
  29. Retzko I, Friedrich JF, Lippitz A, Unger WES, J. Electron Spectrosc. Relat. Phenom., 121, 111 (2001) 
  30. Rinsch CL, Chen XL, Panchalingam V, Eberhart RC, Wang JH, Timmons RB, Langmuir, 12(12), 2995 (1996) 
  31. Russell SP, Weinkauf DH, Polymer, 42(7), 2827 (2001) 
  32. Schonherr H, van Os MT, Forch R, Timmons RB, Knoll W, Vancso GJ, Chem. Mater., 12, 3689 (2000) 
  33. Shi FF, Surf. Coat. Technol., 82, 1 (1996) 
  34. Shirtcliffe N, Thiemann P, Stratmann M, Grundmeier G, Surf. Coat. Technol., 142, 1121 (2001) 
  35. Szili E, Thissen H, Hayes JP, Voelcker N, Biosens. Bioelectron., 19, 1395 (2004) 
  36. van Os MT, Menges B, Foerch R, Vancso GJ, Knoll W, Chem. Mater., 11, 3252 (1999) 
  37. Wang JH, Chen JJ, Timmons RB, Chem. Mater., 8, 2212 (1996) 
  38. Yasuda H, Plasma Polymerization, Academic Press, Orlando, FL (1985)
  39. Zajickova L, Rudakowski S, Becker HW, Meyer D, Valtr M, Wiesemann K, Thin Solid Films, 425(1-2), 72 (2003) 
  40. Zenkiewicz M, J. Adhes. Sci. Technol., 15, 1769 (2001) 
  41. Zhang J, Feng XF, Xie HK, Shi YC, Pu TS, Guo Y, Thin Solid Films, 435(1-2), 108 (2003)