화학공학소재연구정보센터
Korea-Australia Rheology Journal, Vol.18, No.2, 103-107, June, 2006
Electrorheology of conducting polyaniline-BaTiO3 composite
E-mail:
Organic-inorganic composite of polyaniline and barium titanate (PANI-BaTiO3) was synthesized via an insitu oxidation polymerization of aniline in the presence of barium titanate (BaTiO3) nanoparticles dispersed in an acidic medium. Barium titanate has large electric resistance and relatively high dielectric constant which is one of the essential properties for its electrorheological (ER) applications. The microstructure and composition of the obtained PANI/BaTiO3 composite were characterized by SEM, FT-IR and XRD. In addition, we also employed a rotational rheometer to investigate the rheological performance of the ER fluids based on both pure PANI particle and PANI/BaTiO3 composite. It was found that the composite materials possess much higher yield stresses than the pristine PANI due to unique dielectric properties of the inorganic BaTiO3 particles. Finally, we also examined dynamic yield stress by analyzing its extrapolated yield stress data as a function of electric field strengths. Using the critical electric field strengths deduced, we further found that the universal yield stress equation collapses their data onto a single curve.
  1. Chin BD, Park OO, J. Colloid Interface Sci., 234, 334 (2001)
  2. Cho MS, Choi HJ, Ahn WS, Langmuir, 20(1), 202 (2004) 
  3. Cho MS, Lee JH, Choi HJ, Ahn KH, Lee SJ, Jeon D, J. Mater. Sci., 39(4), 1377 (2004) 
  4. Cho MS, Choi HJ, Jhon MS, Polymer, 46(25), 11484 (2005) 
  5. Choi HJ, Kim TW, Cho MS, Kim SG, Jhon MS, Eur. Polym. J., 33, 699 (1997) 
  6. Choi HJ, Lee JH, Cho MS, Jhon MS, Polym. Eng. Sci., 39(3), 493 (1999) 
  7. Choi HJ, Cho MS, Kim JW, Kim CA, Jhon MS, Appl. Phys. Lett., 78, 3806 (2001) 
  8. Choi KC, Lee EK, Choi SY, J. Ind. Eng. Chem., 11(1), 66 (2005)
  9. Gospodinova N, Terlemezyan L, Prog. Polym. Sci, 23, 1443 (1998) 
  10. Hao T, Kawai A, Ikazaki F, Langmuir, 16(7), 3058 (2000) 
  11. Ikazakiy F, Kawaiy A, Uchiday K, Kawakamiz T, Edamurax K, J. Phys. D-Appl. Phys., 31, 336 (1998) 
  12. James DF, Blakey BC, Korea-Aust. Rheol. J., 16(3), 109 (2004)
  13. Kim DH, Chu SH, Ahn KH, Lee SJ, Korea-Aust. Rheol. J., 11(3), 233 (1999)
  14. Kim JW, Cho YH, Choi HJ, Lee HG, Choi SB, J. Intell. Mater. Syst. Struct., 13, 509 (2002)
  15. Kim JW, Kim CA, Choi HJ, Choi SB, Korea-Aust. Rheol. J., 18(1), 25 (2006)
  16. Kareiva A, Tautkus S, Rapalaviciute R, Jorgensen JE, Lundtoft B, J. Mater. Sci., 34(19), 4853 (1999) 
  17. Klingerberg DJ, van Swol F, Zukoski CF, J. Chem. Phys., 94, 6170 (1991) 
  18. Lee YH, Ju YW, Jung HR, Huh YI, Lee WJ, J. Ind. Eng. Chem., 11(4), 550 (2005)
  19. Mercouri GK, Chun GW, Henry OM, Carl RK, J. Am. Chem. Soc., 111, 4139 (1989) 
  20. Patil RC, Radhakrishnan S, J. Mater. Res., 16, 1982 (2001)
  21. See H, J. Ind. Eng. Chem., 10(7), 1132 (2004)
  22. Strounina EV, Shepherd R, Kane-Maguire LAP, Wallace GG, Synth. Met., 135, 289 (2003) 
  23. Sung JH, Lee I, Choi HJ, Int. J. Mod. Phys. B, 19, 1128 (2004) 
  24. Sung JH, Cho MS, Choi HJ, Jhon MS, J. Ind. Eng. Chem., 7, 1217 (2004)
  25. Sung JH, Choi HJ, Korea-Aust. Rheol. J., 16(4), 193 (2004)
  26. Trlica J, Saha P, Quadrat O, Stejskal J, J. Phys. D-Appl. Phys., 33, 1773 (2000) 
  27. Wei JH, Shi J, Guan JG, Yuan RZ, J. Mater. Sci., 39(10), 3457 (2004) 
  28. Zhao XP, Yin JB, Chem. Mater., 14, 2258 (2002) 
  29. Zhao XP, Yin JB, J. Ind. Eng. Chem., 12(2), 184 (2006)