Macromolecular Research, Vol.14, No.3, 287-299, June, 2006
Successive Synthesis of Well-Defined Star-Branched Polymers by an Iterative Approach Based on Living Anionic Polymerization
E-mail:
To successively synthesize star-branched polymers, we developed a new iterative methodology which involves only two sets of the reactions in each iterative process: (a) an addition reaction of DPE or DPE-functionalized polymer to a living anionic polymer, and (b) an in-situ reaction of 1-(4-(4-bromobutyl)phenyl) -1-phenylethylene with the generated 1,1-diphenylalkyl anion to introduce one DPE functionality. With this methodology, 3-, 4-, and 5-arm, regular star-branched polystyrenes, as well as 3-arm ABC, 4-arm ABCD, and a new 5-arm ABCDE, asymmetric star-branched polymers, were successively synthesized. The A, B, C, D, and E arm segments were poly(4-trimethylsilylstyrene), poly(4-methoxystyrene), poly(4-methylstyrene), polystyrene, and poly(4-tertbutyldimethylsilyloxystyrene), respectively. All of the resulting star-branched polymers were well-defined in architecture and precisely controlled in chain length, as confirmed by SEC, 1H NMR, VPO, and SLS analyses. Furthermore, we extended the iterative methodology by the use of a new functionalized DPE derivative, 1-(3-chloromethylphenyl)-1-((3-(1-phenylethenyl)phenyl)ethylene, capable of introducing two DPE functionalities via one DPE anion reaction site in the reaction (b). The number of arm segments of the star-branched polymer synthesized by the methodology could be dramatically increased to 2, 6, and up to 14 by repeating the iterative process.
- Bauer BJ, Fetters LJ, Rubber Chem. Technol., 51, 406 (1978)
- Bywater S, Adv. Polym. Sci., 30, 89 (1979)
- Roovers J, in Encyclopedia of Polymer Science and Engineering, 2nd ed., J. I. Kroschwitz, Ed., Wiley-Interscience, New York, Vol. 2, pp 478-499 (1989)
- Rempp P, Herz JE, in Encyclopedia of Polymer Science and Engineering, 2nd ed., J. I. Kroschwitz, Ed., Wiley-Interscience, New York, Suppl. Vol., pp 493-510 (1989)
- Fetters LJ, Tomas EL, in Material Science and Technology, VCH Verlangesellschaft, Weinheim, Germany, Vol. 12, pp 1-31 (1993)
- Hsieh HL, Quirk RP, in Anionic Polymerization: Principles and Applications, Marcel Dekker, New York, 1996, pp 333-368 (1996)
- Grest GS, Fetters LJ, Huang JS, Adv. Chem. Phys., XCIV, 67 (1996)
- Lutz PJ, Rein D, in Star and Hyperbranched Polymers, M. K. Mishra and S. Kobayashi, Eds., Marcel Dekker, New York, 1999, pp 27-57 (1999)
- Hadjichristidis N, J. Polym. Sci. A: Polym. Chem., 37(7), 857 (1999)
- Hadjichristidis N, Pitsikalis M, Iatrou H, Vlahos C, Adv. Polym. Sci., 142, 72 (1999)
- Hadjichristidis N, Pitsikalis M, Pispas S, Iatrou H, Chem. Rev., 101(12), 3747 (2001)
- Hadjichristidis N, Pitsikalis M, Iatrou H, Pispas S, Macromol. Rapid Commun., 24, 979 (2003)
- Hirao A, Hayashi M, Tokuda Y, Haraguchi N, Higashihara T, Ryu SW, Polym. J., 34, 1 (2002)
- Hirao A, Hayashi M, Loykulnant S, Sugiyama K, Ryu SW, Haraguchi N, Matsuo A, Higashihara T, Prog. Polym. Sci, 30, 111 (2005)
- Pispas S, Poulos Y, Hadjichristidis N, Macromolecules, 31(13), 4177 (1998)
- Sioula S, Hadjichristidis N, Thomas EL, Macromolecules, 31(16), 5272 (1998)
- Sioula S, Hadjichristidis N, Thomas EL, Macromolecules, 31(23), 8429 (1998)
- Pispas S, Hadjichristidis N, Potemkin I, Khokhlov A, Macromolecules, 33(5), 1741 (2000)
- Huckstadt H, Gopfert A, Abetz V, Macromol. Chem. Phys., 201, 296 (2000)
- Yamauchi K, Takahashi K, Hasegawa H, Iatrou H, Hadjichristidis N, Kaneko T, Nishikawa Y, Jinnai H, Matsui T, Nishioka H, Shimizu M, Fukukawa H, Macromolecules, 36(19), 6962 (2003)
- Penisi RW, Fetters L, Macromolecules, 21, 1094 (1988)
- Mays JW, Polym. Bull., 23, 247 (1990)
- Khan IM, Gao Z, Khougaz K, Eisenberg A, Macromolecules, 25, 3002 (1992)
- Iatrou H, Hadjichristidis N, Macromolecules, 25, 4649 (1992)
- Iatrou H, Hadjichristidis N, Macromolecules, 26, 2479 (1993)
- Iatrou H, Siakalikioulafa E, Hadjichristidis N, Roovers J, Mays J, J. Polym. Sci. B: Polym. Phys., 33(13), 1925 (1995)
- Avgeropoulos A, Poulos Y, Hadjichristidis N, Roovers J, Macromolecules, 29(18), 6076 (1996)
- Sioula S, Tselikas Y, Hadjichristidis N, Macromolecules, 30(5), 1518 (1997)
- Avgeropoulos A, Hadjichristidis N, J. Polym. Sci. A: Polym. Chem., 35(4), 813 (1997)
- Velis G, Hadjichristidis N, Macromolecules, 32(2), 534 (1999)
- Fujimoto T, Zhang H, Kazama T, Isono Y, Hasegawa H, Hashimoto T, Polymer, 29, 6076 (1992)
- Huckstadt H, Abetz V, Stadler R, Macromol. Rapid Commun., 17, 599 (1996)
- Quirk RP, Lee B, Schock LE, Makromol. Chem. Macromol. Symp., 53, 201 (1992)
- Quirk RP, Yoo T, Lee B, J. Macromol. Sci.-Pure Appl. Chem., A31, 911 (1994)
- Quirk RP, Yoo T, Lee Y, Kim J, Lee B, Adv. Polym. Sci., 153, 67 (2000)
- Bae YC, Faust R, Macromolecules, 31(8), 2480 (1998)
- Yun J, Faust R, Macromolecules, 35(21), 7860 (2002)
- Fernyhough CM, Young RN, Tack RD, Macromolecules, 32(18), 5760 (1999)
- Lambert O, Dumas P, Hurtrez G, Riess G, Macromol. Rapid Commun., 18, 343 (1997)
- Lambert O, Reutenauer S, Hurtrez G, Riess G, Dumas P, Polym. Bull., 40(2-3), 143 (1998)
- Reutenauer S, Hurtrez G, Dumas P, Macromolecules, 34(4), 755 (2001)
- Meyer N, Delaite C, Hurtrez G, Dumas P, Polymer, 43(25), 7133 (2002)
- Hayashi M, Kojima K, Hirao A, Macromolecules, 32(8), 2425 (1999)
- Hayashi M, Negishi Y, Hirao A, Proc. Jpn. Acad. Ser. B, 75, 93 (1999)
- Hirao A, Hayashi M, Acta Polym., 50, 219 (1999)
- Hirao A, Hayashi M, Haraguchi N, Macromol. Rapid Commun., 21, 1171 (2000)
- Hirao A, Matsuo A, Morifuji K, Tokuda Y, Hayashi M, Polym. Adv. Technol., 12, 680 (2001)
- Hirao A, Hayashi M, Higashihara T, Macromol. Chem. Phys., 202, 3165 (2001)
- Hirao A, Higashihara T, Macromolecules, 35(19), 7238 (2002)
- Hirao A, Haraguchi N, Macromolecules, 35(19), 7224 (2002)
- Hirao A, Hayashi M, Matsuo A, Polymer, 43(25), 7125 (2002)
- Hirao A, Matsuo A, Macromolecules, 36(26), 9742 (2003)
- Hirao A, Kawasaki K, Higashihara T, Sci. Technol. Adv. Mater., 5, 469 (2004)
- Hirao A, Kawasaki K, Higashihara T, Macromolecules, 37(14), 5179 (2004)
- Hirao A, Higashihara T, Macromol. Symp., 215, 57 (2004)
- Higashihara T, Hirao A, J. Polym. Sci. A: Polym. Chem., 42(18), 4535 (2004)
- Higashihara T, Nagura M, Inoue K, Haraguchi N, Hirao A, Macromolecules, 38(11), 4577 (2005)
- Hirao A, Hayashi M, Higashihara T, Macromol. Chem. Phys., 202, 3165 (2001)
- Hirao A, Higashihara T, Macromolecules, 35(19), 7238 (2002)
- Zhao YL, Higashihara T, Sugiyama K, Hirao A, J. Am. Chem. Soc., 127(41), 14158 (2005)
- Pike RM, J. Polym. Sci., 40, 577 (1959)
- Hirao A, Yamaguchi K, Takenaka K, Suzuki K, Nakahama S, Makromol. Chem. Rapid Commun., 3, 941 (1982)
- Schulz GGH, Hocker H, Makromol. Chem., 178, 2589 (1977)
- Douglas JF, Roovers J, Freed KF, Macromolecules, 23, 4168 (1990)
- Corbin N, Prudhomeme J, J. Polym. Sci. B: Polym. Phys., 15, 1937 (1977)
- The first successful synthesis of 4-arm ABCD asymmetric star-branched polymer by the coupling of living anionic polymers with SiCl4 was reported by Hadjichristidis’s group in 1993 (ref. 20(b)). In this star, the A, B, C, and D segments were polystyrene, poly(4-methylstyrene), polyisoprene, and poly(1,3-butadiene), respectively. We have recently synthesized two structural similar 4-arm ABCD asymmetric starbranched polymers whose A, B, C, and D segments are polyisoprene, poly(4-methoxystyrene), polystyrene, and poly(4- trimethylsilylstyrene) (ref. 40), and polystyrene, poly( α- methylstyrene), poly(4-methylstyrene), and poly(methyl methacrylate) (ref. 41). Furthermore, the synthesis of more complex well-defined 7-arm A2B2C2D and 13-arm A4B4C4D asymmetric stars has also been successfully achieved by our research group (refs. 37 and 38). Very recently, we have successfully synthesized a 5-arm ABCDE asymmetric starbranched polymer for the first time. The A,B,C,D, and E segments in this star are polystyrene, poly( α-methylstyrene), poly(4-trimethylsilylstyrene), poly(4-methoxystyrene), and poly(4-methylphenyl vinyl sulfoixe), respectively (ref. 44)