화학공학소재연구정보센터
Macromolecular Research, Vol.14, No.3, 287-299, June, 2006
Successive Synthesis of Well-Defined Star-Branched Polymers by an Iterative Approach Based on Living Anionic Polymerization
E-mail:
To successively synthesize star-branched polymers, we developed a new iterative methodology which involves only two sets of the reactions in each iterative process: (a) an addition reaction of DPE or DPE-functionalized polymer to a living anionic polymer, and (b) an in-situ reaction of 1-(4-(4-bromobutyl)phenyl) -1-phenylethylene with the generated 1,1-diphenylalkyl anion to introduce one DPE functionality. With this methodology, 3-, 4-, and 5-arm, regular star-branched polystyrenes, as well as 3-arm ABC, 4-arm ABCD, and a new 5-arm ABCDE, asymmetric star-branched polymers, were successively synthesized. The A, B, C, D, and E arm segments were poly(4-trimethylsilylstyrene), poly(4-methoxystyrene), poly(4-methylstyrene), polystyrene, and poly(4-tertbutyldimethylsilyloxystyrene), respectively. All of the resulting star-branched polymers were well-defined in architecture and precisely controlled in chain length, as confirmed by SEC, 1H NMR, VPO, and SLS analyses. Furthermore, we extended the iterative methodology by the use of a new functionalized DPE derivative, 1-(3-chloromethylphenyl)-1-((3-(1-phenylethenyl)phenyl)ethylene, capable of introducing two DPE functionalities via one DPE anion reaction site in the reaction (b). The number of arm segments of the star-branched polymer synthesized by the methodology could be dramatically increased to 2, 6, and up to 14 by repeating the iterative process.
  1. Bauer BJ, Fetters LJ, Rubber Chem. Technol., 51, 406 (1978)
  2. Bywater S, Adv. Polym. Sci., 30, 89 (1979)
  3. Roovers J, in Encyclopedia of Polymer Science and Engineering, 2nd ed., J. I. Kroschwitz, Ed., Wiley-Interscience, New York, Vol. 2, pp 478-499 (1989)
  4. Rempp P, Herz JE, in Encyclopedia of Polymer Science and Engineering, 2nd ed., J. I. Kroschwitz, Ed., Wiley-Interscience, New York, Suppl. Vol., pp 493-510 (1989)
  5. Fetters LJ, Tomas EL, in Material Science and Technology, VCH Verlangesellschaft, Weinheim, Germany, Vol. 12, pp 1-31 (1993)
  6. Hsieh HL, Quirk RP, in Anionic Polymerization: Principles and Applications, Marcel Dekker, New York, 1996, pp 333-368 (1996)
  7. Grest GS, Fetters LJ, Huang JS, Adv. Chem. Phys., XCIV, 67 (1996)
  8. Lutz PJ, Rein D, in Star and Hyperbranched Polymers, M. K. Mishra and S. Kobayashi, Eds., Marcel Dekker, New York, 1999, pp 27-57 (1999)
  9. Hadjichristidis N, J. Polym. Sci. A: Polym. Chem., 37(7), 857 (1999) 
  10. Hadjichristidis N, Pitsikalis M, Iatrou H, Vlahos C, Adv. Polym. Sci., 142, 72 (1999)
  11. Hadjichristidis N, Pitsikalis M, Pispas S, Iatrou H, Chem. Rev., 101(12), 3747 (2001) 
  12. Hadjichristidis N, Pitsikalis M, Iatrou H, Pispas S, Macromol. Rapid Commun., 24, 979 (2003) 
  13. Hirao A, Hayashi M, Tokuda Y, Haraguchi N, Higashihara T, Ryu SW, Polym. J., 34, 1 (2002) 
  14. Hirao A, Hayashi M, Loykulnant S, Sugiyama K, Ryu SW, Haraguchi N, Matsuo A, Higashihara T, Prog. Polym. Sci, 30, 111 (2005) 
  15. Pispas S, Poulos Y, Hadjichristidis N, Macromolecules, 31(13), 4177 (1998) 
  16. Sioula S, Hadjichristidis N, Thomas EL, Macromolecules, 31(16), 5272 (1998) 
  17. Sioula S, Hadjichristidis N, Thomas EL, Macromolecules, 31(23), 8429 (1998) 
  18. Pispas S, Hadjichristidis N, Potemkin I, Khokhlov A, Macromolecules, 33(5), 1741 (2000) 
  19. Huckstadt H, Gopfert A, Abetz V, Macromol. Chem. Phys., 201, 296 (2000) 
  20. Yamauchi K, Takahashi K, Hasegawa H, Iatrou H, Hadjichristidis N, Kaneko T, Nishikawa Y, Jinnai H, Matsui T, Nishioka H, Shimizu M, Fukukawa H, Macromolecules, 36(19), 6962 (2003) 
  21. Penisi RW, Fetters L, Macromolecules, 21, 1094 (1988) 
  22. Mays JW, Polym. Bull., 23, 247 (1990) 
  23. Khan IM, Gao Z, Khougaz K, Eisenberg A, Macromolecules, 25, 3002 (1992) 
  24. Iatrou H, Hadjichristidis N, Macromolecules, 25, 4649 (1992) 
  25. Iatrou H, Hadjichristidis N, Macromolecules, 26, 2479 (1993) 
  26. Iatrou H, Siakalikioulafa E, Hadjichristidis N, Roovers J, Mays J, J. Polym. Sci. B: Polym. Phys., 33(13), 1925 (1995) 
  27. Avgeropoulos A, Poulos Y, Hadjichristidis N, Roovers J, Macromolecules, 29(18), 6076 (1996) 
  28. Sioula S, Tselikas Y, Hadjichristidis N, Macromolecules, 30(5), 1518 (1997) 
  29. Avgeropoulos A, Hadjichristidis N, J. Polym. Sci. A: Polym. Chem., 35(4), 813 (1997) 
  30. Velis G, Hadjichristidis N, Macromolecules, 32(2), 534 (1999) 
  31. Fujimoto T, Zhang H, Kazama T, Isono Y, Hasegawa H, Hashimoto T, Polymer, 29, 6076 (1992)
  32. Huckstadt H, Abetz V, Stadler R, Macromol. Rapid Commun., 17, 599 (1996) 
  33. Quirk RP, Lee B, Schock LE, Makromol. Chem. Macromol. Symp., 53, 201 (1992)
  34. Quirk RP, Yoo T, Lee B, J. Macromol. Sci.-Pure Appl. Chem., A31, 911 (1994)
  35. Quirk RP, Yoo T, Lee Y, Kim J, Lee B, Adv. Polym. Sci., 153, 67 (2000)
  36. Bae YC, Faust R, Macromolecules, 31(8), 2480 (1998) 
  37. Yun J, Faust R, Macromolecules, 35(21), 7860 (2002) 
  38. Fernyhough CM, Young RN, Tack RD, Macromolecules, 32(18), 5760 (1999) 
  39. Lambert O, Dumas P, Hurtrez G, Riess G, Macromol. Rapid Commun., 18, 343 (1997) 
  40. Lambert O, Reutenauer S, Hurtrez G, Riess G, Dumas P, Polym. Bull., 40(2-3), 143 (1998) 
  41. Reutenauer S, Hurtrez G, Dumas P, Macromolecules, 34(4), 755 (2001) 
  42. Meyer N, Delaite C, Hurtrez G, Dumas P, Polymer, 43(25), 7133 (2002) 
  43. Hayashi M, Kojima K, Hirao A, Macromolecules, 32(8), 2425 (1999) 
  44. Hayashi M, Negishi Y, Hirao A, Proc. Jpn. Acad. Ser. B, 75, 93 (1999)
  45. Hirao A, Hayashi M, Acta Polym., 50, 219 (1999) 
  46. Hirao A, Hayashi M, Haraguchi N, Macromol. Rapid Commun., 21, 1171 (2000) 
  47. Hirao A, Matsuo A, Morifuji K, Tokuda Y, Hayashi M, Polym. Adv. Technol., 12, 680 (2001) 
  48. Hirao A, Hayashi M, Higashihara T, Macromol. Chem. Phys., 202, 3165 (2001) 
  49. Hirao A, Higashihara T, Macromolecules, 35(19), 7238 (2002) 
  50. Hirao A, Haraguchi N, Macromolecules, 35(19), 7224 (2002) 
  51. Hirao A, Hayashi M, Matsuo A, Polymer, 43(25), 7125 (2002) 
  52. Hirao A, Matsuo A, Macromolecules, 36(26), 9742 (2003) 
  53. Hirao A, Kawasaki K, Higashihara T, Sci. Technol. Adv. Mater., 5, 469 (2004) 
  54. Hirao A, Kawasaki K, Higashihara T, Macromolecules, 37(14), 5179 (2004) 
  55. Hirao A, Higashihara T, Macromol. Symp., 215, 57 (2004) 
  56. Higashihara T, Hirao A, J. Polym. Sci. A: Polym. Chem., 42(18), 4535 (2004) 
  57. Higashihara T, Nagura M, Inoue K, Haraguchi N, Hirao A, Macromolecules, 38(11), 4577 (2005) 
  58. Hirao A, Hayashi M, Higashihara T, Macromol. Chem. Phys., 202, 3165 (2001) 
  59. Hirao A, Higashihara T, Macromolecules, 35(19), 7238 (2002) 
  60. Zhao YL, Higashihara T, Sugiyama K, Hirao A, J. Am. Chem. Soc., 127(41), 14158 (2005) 
  61. Pike RM, J. Polym. Sci., 40, 577 (1959) 
  62. Hirao A, Yamaguchi K, Takenaka K, Suzuki K, Nakahama S, Makromol. Chem. Rapid Commun., 3, 941 (1982) 
  63. Schulz GGH, Hocker H, Makromol. Chem., 178, 2589 (1977) 
  64. Douglas JF, Roovers J, Freed KF, Macromolecules, 23, 4168 (1990) 
  65. Corbin N, Prudhomeme J, J. Polym. Sci. B: Polym. Phys., 15, 1937 (1977)
  66. The first successful synthesis of 4-arm ABCD asymmetric star-branched polymer by the coupling of living anionic polymers with SiCl4 was reported by Hadjichristidis’s group in 1993 (ref. 20(b)). In this star, the A, B, C, and D segments were polystyrene, poly(4-methylstyrene), polyisoprene, and poly(1,3-butadiene), respectively. We have recently synthesized two structural similar 4-arm ABCD asymmetric starbranched polymers whose A, B, C, and D segments are polyisoprene, poly(4-methoxystyrene), polystyrene, and poly(4- trimethylsilylstyrene) (ref. 40), and polystyrene, poly( α- methylstyrene), poly(4-methylstyrene), and poly(methyl methacrylate) (ref. 41). Furthermore, the synthesis of more complex well-defined 7-arm A2B2C2D and 13-arm A4B4C4D asymmetric stars has also been successfully achieved by our research group (refs. 37 and 38). Very recently, we have successfully synthesized a 5-arm ABCDE asymmetric starbranched polymer for the first time. The A,B,C,D, and E segments in this star are polystyrene, poly( α-methylstyrene), poly(4-trimethylsilylstyrene), poly(4-methoxystyrene), and poly(4-methylphenyl vinyl sulfoixe), respectively (ref. 44)