화학공학소재연구정보센터
Journal of Industrial and Engineering Chemistry, Vol.12, No.4, 539-545, July, 2006
Surface Modification and Permeation Characteristics of PVDF Membrane afterGraft Polymerization Using PolarMonomer
E-mail:
Surface modification of a hydrophobic poly(vinylidine fluoride) (PVDF) membrane using a polar monomer [acrylic acid (AA) or 2-hydroxyethyl methacrylate (HEMA)] is challenging because the hydrophobic membrane surface becomes hydrophilic. It can be performed through chemical grafting using benzoyl peroxide (BPO) as a radical polymerization initiator to impart permanent hydrophilicity. Acetone and toluene may be used as solvents. The grafted membrane was characterized for its functional groups by IR spectroscopy. The intensity of the band at 1713 cm-1 (for C = O groups) was observed in the grafted membranes PVDFM1 and PVDFM2. The characteristic signals of the C = O and OH groups for the membranes PVDFM3 and PVDFM4 occurred at 1711 and 3435 cm-1, respectively. These bands were not observed in the PVDF base membrane. The degree of grafting of poly(AA) or poly(HEMA) on the PVDF membrane increased in the order PVDFM3 > PVDFM4 > PVDFM1 > PVDFM2 > PVDF. SEM images revealed that highly grafted membranes had a higher surface coverage and much smaller pores, which leads to a lower contact angle, higher hydrophilicity, and higher flux. According to contact angle measurements, the hydrophilicity increased in the order PVDFM3 > PVDFM4 > PVDFM1 > PVDFM2 > PVDF. We observed that steady flux of pure water before fouling, yeast solution and pure water after fouling increases as the same order of hydrophilicity.
  1. Singh N, Husson SM, Zdyrko B, Luzinov I, J. Membr. Sci., 262(1-2), 81 (2005)
  2. Hilal N, Kochkodan V, Al-Khatib L, Levadna T, Desalination, 167(1-3), 293 (2004)
  3. Ochoa NA, Masuelli M, Marchese J, J. Membr. Sci., 226(1-2), 203 (2003)
  4. Klee D, Ademovic Z, Bosserhoff A, Hoecker H, Maziolis G, Erli H, Biomaterials, 24, 3663 (2003)
  5. Khayet M, Matsuura T, Desalination, 148(1-3), 31 (2002)
  6. Jolivalt C, Brenon S, Caminade E, Mougin C, Pontie M, J. Membr. Sci., 180(1), 103 (2000)
  7. Hwang TS, Park JW, Kim SM, Cho SY, J. Ind. Eng. Chem., 10(3), 409 (2004)
  8. Iwata H, Kishida A, Suzuki M, Hata Y, Ikada Y, J. Polym. Sci. Polym. Chem. Educ., 26, 3303 (1984)
  9. Karakalle M, Zdrahala RJ, J. Membr. Sci., 41, 305 (1989)
  10. Wang YJ, Chen CH, Yeh ML, Hsiue GH, Yu BC, J. Membr. Sci., 53, 275 (1990)
  11. Hoffman AS, J. Appl. Polym. Sci. Appl. Polym. Symp., 46, 341 (1990) 
  12. Wang CC, Hsiue GH, J. Appl. Polym. Sci., 50, 1141 (1993)
  13. Kim M, Saito K, Furusaki F, J. Membr. Sci., 56, 289 (1992)
  14. Neel J, Makromol. Chem. Macromol. Symp., 70/71, 327 (1993)
  15. Hirotsu T, in Pervoration Membrane Separation Processes, R. Y. M. Huang, Ed., Elsevier Science Publishers B. V., Amsterdam, p. 461 (1991)
  16. Gupta B, Sherer GG, Chimia, 48, 127 (1964)
  17. Ishigaki I, Sogo T, Senoo K, Takayama T, Machi S, Okamoto J, Okada T, Rad. Phys. Chem., 18, 899 (1981)
  18. Yamada K, J. Appl. Polym. Sci., 44, 993 (1992)
  19. Yao ZP, Ranby B, J. Appl. Polym. Sci., 40, 1647 (1990)
  20. Lanuaze JA, Myers DL, J. Appl. Polym. Sci., 40, 595 (1990)
  21. Strobel M, Dunatov C, Strabel JM, Lyons CS, Perron SJ, Morgan MC, J. Adhes. Sci. Technol., 3, 321 (1989)
  22. Briggs D, Brewis DM, Konieczko MB, J. Mater. Sci., 14, 1344 (1979)
  23. Sutherland I, Brewis DM, Heath RJ, Sheng E, Surf. Interface Anal., 17, 507 (1991)
  24. Briggs D, Brewis DM, Konieczko MB, J. Mater. Sci., 11, 1270 (1976)
  25. Willis HA, Zichy VJI, in Polymer Surfaces, D. T. Clark and W. J. Feast, Eds., Wiley, New York, Chap. 15 (1978)
  26. Peeling J, Clark DT, J. Polym. Sci., Polym. Chem. Ed., 21, 2047 (1983) 
  27. Yamauchi J, Yamaoka A, Ikemoto K, Matsu T, J. Appl. Polym. Sci., 43, 1197 (1991)
  28. Yasuda H, Makromol. Chem. Macromol. Symp., 70/71, 29 (1993)
  29. Cho DL, Eckengreen O, J. Appl. Polym. Sci., 47, 2125 (1993)
  30. Hirotsu T, Arita A, J. Appl. Polym. Sci., 42, 3255 (1991)
  31. Mehta IK, Kumar S, Chauhan GH, Mishra BN, J. Appl. Polym. Sci., 41, 1171 (1993)
  32. Saito K, Yamaguchi T, Uezu K, Furusaki S, Sugo T, Okamoto J, J. Appl. Polym. Sci., 39, 2153 (1990)
  33. Kabay N, Katakai A, Sugo T, Egawa H, J. Appl. Polym. Sci., 49, 599 (1993)
  34. Okamoto J, Radiat. Phys. Chem., 29, 469 (1987)
  35. Sugiyama K, Kato K, Kido M, Shiraishi K, Ohga K, Okada K, Matsuo O, Macromol. Chem. Phys., 199, 1201 (1998)
  36. Uchida E, Ikada Y, Macromolecules, 30, 6464 (1997)
  37. Walton, Methods of Chemical Analysis, 2nd Edn., Principles and Prentice Hall, Englewood Cliffs, NJ, pp. 175-178 (1964)
  38. Strathmann H, Kock K, Desalination, 21, 241 (1977)
  39. Lee JH, Jeong BJ, Lee HB, J. Biomed. Mater. Res., 34, 105 (1997)
  40. Kang ET, Neoh KG, Tan KL, Loh FC, Synth. Met., 84, 59 (1997)
  41. Boutevin B, Pietrasanta Y, Seradini A, Eur. Polym. J., 28, 1507 (1992)
  42. Good RJ, J. Am. Chem. Soc., 74, 5041 (1952)
  43. Yeon SH, Sea B, Lee KS, Park YI, Lee KH, J. Korean Ind. Eng. Chem., 13(8), 787 (2002)
  44. Brandrup J, Immergut EH, Polymer Handbook, 3rd Edn., Wiley-Interscience, New York (1989)
  45. Barton A, Handbook of Solubility Parameters and other Cohesion Parameters, CRC Press (1985)
  46. Palacio L, Calvo JI, Pradanos P, Hernandez A, Vaisanen P, Nystrom M, J. Membr. Sci., 152(2), 189 (1999)
  47. Keurentjes JTF, Harbrecht JG, Brinkman D, Hanemaajer JH, Cohen Stuart MA, Van’t Riet H, J. Membr. Sci., 47, 333 (1989)
  48. Chung KY, Chang KM, J. Ind. Eng. Chem., 7(4), 250 (2001)