화학공학소재연구정보센터
Clean Technology, Vol.12, No.2, 53-61, June, 2006
초임계 PGSS 법을 이용한 Poly(lactide-co-glycolide)와 단백질의 마이크로복합체 제조에 관한 연구
The Production of Protein-loaded Poly(lactide-co-glycolide) Microparticles using Supercritical Carbon Dioxide
E-mail:
초록
생분해성 고분자인 Poly(lactide-co-glycolide) (PLGA)와 약물 단백질로 약물 중합체를 만들기 위하여 초임계 나노 입자 제조 공정중 하나인 PGSS법을 이용하여 연구를 수행하였다. 초임계 이산화탄소에 의해서 고분자 PLGA의 유리전이온도(Tg)를 강하시켜 가소화시키면서 단백질을 용기 내에서 혼합하였다. 고분자 PLGA에 캡슐화 된 단백질의 입자를 얻기 위해 고압 용기에 들어있는 시료를 노즐을 통하여 대기압으로 이산화탄소를 분사시켰다. 입자의 형태, 입자 크기 그리고 크기 분포에 대한 영향을 알아보기 위해서 고압 용기 안에서 초임계 이산화탄소를 이용하여 공정변수들을 조작함으로서 PGSS 실험을 하였다. 입자는 거칠고 불규칙하며 표면에 기공이 생성되었음을 확인하였다. 제조된 입자의 크기와 크기분포는 과포화도, 핵 생성시간 등으로 설명하였다. 제조된 입자 내의 protein의 활성도 저하는 거의 없었다.
A PGSS (Particles from Gas Saturated Solutions) process designed to generate nano-particles using supercritical fluids has been conducted for the fabrication of Poly(lactide-co-glycolide) (PLGA) microparticles that encapsulate a protein drug. It is demonstrated that the polymer and the dry powder of a protein can be mixed under supercritical carbon dioxide conditions and that the protein component retains its biological activity. In this experiment, the mixture of polymer which is plasticized and dry powder protein was sprayed to form solid polymer that encapsulate the protein. It is found that supercritical fluid process give fine tuning of particle size and particle size distribution by simple manipulations of the process parameters. Porous particles were formed with irregular shape. Protein encapsulated in the polymer was found to have enzymatic activity without significant loss of its initial value.
  1. Pack JW, Kim SH, Park SY, Lee YW, Kim YH, Macromol. Biosci., 4, 340 (2004) 
  2. Pack JW, Kim SH, Park SY, Lee YW, Kim YH, Macromol, 37, 3564 (2004) 
  3. Lee YW, HWAHAK KONGHAK, 41(6), 679 (2003)
  4. Shekunov BY, York P, J. Cryst. Growth, 211, 122 (2000) 
  5. Jung J, Perrut M, J. Supercrit. Fluids, 20, 179 (2001) 
  6. Fages J, Lochard H, Letourneau JJ, Sauceau M, Rodier E, Powder Technol., 141(3), 219 (2004) 
  7. Matson DW, Fulton JL, Petersen RC, Smith RD, Ind. Eng. Chem. Res., 26, 2298 (1987) 
  8. Trk M, Hils P, Lietzow R, Schaber K, “Stabilization of pharmaceutical substances by the Rapid Expansion of Supercritical Solutions (RESS),” Proc. 6th Int. Symp. on Supercritical Fluids, Versailles, France, April 28-30, pp.1747-1752 (2003)
  9. Kuwauk X, Debenedetti PG, J. Aerosol Sci., 24, 445 (1993) 
  10. Shaub GR, Brennecke JF, McCready MJ, J. Supercrit. Fluids, 8(4), 318 (1995) 
  11. Reverchon E, Pallado P, J. Supercrit. Fluids, 9(4), 216 (1996) 
  12. Reverchon E, J. Supercrit. Fluids, 15(1), 1 (1999) 
  13. Tom JW, Debenedetti PG, Biotechnol. Prog., 7, 403 (1991) 
  14. Larson KA, King MK, Biotechnol. Prog., 2, 73 (1986)
  15. Ohgaki K, Kobayashi H, Katayama T, Hirokawa N, J. Supercrit. Fluids, 3, 103 (1990) 
  16. Tom JW, Lim GB, Debenedetti PG, Prudhomme RK, “Applications of supercritical fluids in the controlled release of drugs,” ACS Symposium Series 514, American Chemical Society, Washington, DC, pp.238-257 (199.)
  17. Whitaker MJ, Howdle SM, Shakesheff KM, J. Control. Release, 101, 85 (2005) 
  18. Hao J, Whitaker MJ, Wong B, Serhatkulu G, Shakesheff KM, Howdle SM, J. Pharm. Sci., 93, 1083 (2004) 
  19. Michael SW, Howdle SM, Shakesheff KM, Adv. Mater., 14, 1802 (2002) 
  20. Howdle SM, Shakesheff KM, Chem. Commun., 109 (2001) 
  21. Weidner E, Petermann M, Knez Z, Curr. opin. Solid State Mat. Sci., 7, 385 (2003) 
  22. Kayrak D, Akman U, Hortacsu O, J. Supercrit. Fluids, 26, 17 (2003) 
  23. Kappler P, Petermann M, Weidner E, “Size and morphology of particles generated by spraying polymer-melts with carbon dioxide,” Proc. 6th Int. Symp. on Supercritical Fluids, vol. 3, Versailles, France, 2830 April, pp.1891-1896 (2003)
  24. Blake CF, Koenig DF, Mair GA, North AT, Philips DC, Sarma VR, Nature, 206, 757761 (1965)
  25. Wissinger RG, Paulaitis ME, Polym. Sci. Ser. B, 29, 631 (1991)
  26. Alessi P, Cortesi A, Kikic I, Vecchione F, J. Appl. Polym. Sci., 88(9), 2189 (2003) 
  27. Wang WCV, Kramer EJ, J. Polym. Sci. B: Polym. Phys. Ed., 20, 1371 (1982)