화학공학소재연구정보센터
Korean Chemical Engineering Research, Vol.44, No.4, 363-368, August, 2006
구리 촉매 상에서 C9-알데히드의 수소화 반응에 의한 C9-알코올 합성
Synthesis of C9-Alcohol through C9-Aldehyde Hydrogenation over Copper Catalysts
E-mail:
초록
C9-알데히드를 수소화하여 C9-알콜을 제조하는 공정에 사용하기 위한 최적의 촉매를 선정하고, C9-알콜의 수율을 극대화하기 위한 운전 조건을 확립하기 위한 실험을 수행하였다. 구리 전구체로 acetate를 사용하고 침전제로 Na2CO3를 사용하여 제조한 CuO/ZnO/Al2O3(60:30:10 wt%) 촉매의 표면적 및 구리 비표면적이 가장 우수하였으며 C9-알데히드 수소화 반응에서도 가장 우수한 성능을 보였다. 최적화된 촉매를 장착한 trickle bed 반응기를 사용하여 175 °C, 800 psi, WHSV=3 hr.1의 조건에서 94.1 wt%의 C9-알콜 수율을 얻었다. 알데히드의 수소화 반응에 사용되는 다른 촉매들과 비교한 결과 Ni/kieselghur 촉매와 유사한 성능을 보였으며 Cu-Ni-Cr-Na/Al2O3 촉매 및 Ni-Mo/Al2O3 촉매의 경우보다 우수한 성능을 보이는 것을 확인하였다. 장기 촉매 테스트를 통해서 촉매의 안정성을 확인한 결과 약 72시간 이후에는 고비점 부산물의 생성량 증가로 인하여 C9-알콜의 수율이 약간씩 감소하였다.
This study selected the optimal catalyst for the process of producing C9-alcohol by hydrogenating C9-aldehyde, and carried out an experiment in order to establish the operating condition for maximizing the yield of C9-alcohol. The BET surface area and the specific area of copper were most excellent in CuO/ZnO/Al2O3 (60:30:10 wt%) catalyst produced using acetate as a precursor of copper and Na2CO3 as a precipitant, and the catalyst also showed the highest performance in C9-aldehyde hydrogenation. Using a trickle bed reactor loaded with optimized catalyst, we attained 94.1 wt% yield of C9-alcohol under the condition of 175 °C, 800 psi and WHSV=3 hr.1. According to the result of comparing with other catalysts used in the hydrogenation of aldehyde, the catalyst showed similar performance to that of Ni/kieselghur and higher than that of Cu-Ni-Cr-Na/Al2O3 and Ni-Mo/Al2O3. According to the result of examining the stability of the catalyst through a long-term catalysis test, the yield of C9-alcohol decreased slowly after around 72 hours due to the increasing production of high boiling-point byproducts.
  1. He D, Pang D, Wang T, Chen Y, Liu Y, Zhu Q, J. Mol. Catal. A-Chem., 174(1-2), 21 (2001) 
  2. Jeon JK, Park SK, Park YK, Catal. Today, 93, 467 (2004) 
  3. Jeon JK, Park YK, J. Korean Ind. Eng. Chem., 14(5), 666 (2003)
  4. Jeon JK, Park YK, Kim JM, Chem. Lett., 33(2), 174 (2004) 
  5. Tang Z, Zhou YC, Feng YY, Appl. Catal. A: Gen., 273(1-2), 171 (2004) 
  6. Wang XQ, Saleh RY, Ozkan US, J. Catal., 231(1), 20 (2005) 
  7. Schroder U, Andersson B, J. Catal., 132(2), 402 (1991) 
  8. Tronconi E, Lietti L, Groppi G, Forzatti P, Pasquon I, J. Catal., 135(1), 99 (1991)
  9. Sanchez-Delgado RG, Andriollo A, De Ochoa OL, Suarez T, Valencia N, J. Org. Chem., 209(1), 77 (1981)
  10. Vargas JM, Riley Kenneth L, “Hydrogenation Catalyst with low Phosphorous Content for oxo Alcohol Process,” U.S. Patent No. 5,382,71 (1995)
  11. Vargas JM, Riley Agosto M, Kenneth L, “Hydrogenation Catalyst for Oxo Alcohol Process,” U.S. Patent No. 5,399,793 (1995)
  12. Deckers G, Horn G, “Hydrogenation of Aldehydes, Ketones, Carboxylic Acids and Esters,” U.S. Patent No. 5,569,792 (1996)
  13. Deckers G, Horn G, “Copper Catalysts,” U.S. Patent No. 5,453,412 (1993)
  14. Thurman LR, Harris JB, “Process for the Production of 2-ethylhexanol,” U.S. Patent No. 5,227,544 (1993)
  15. Adam K, Haarer E, “Production of 2-ethylhexanol-(1) by Hydrogenation of 2-ethylhexen-(2)-al-(1),” U.S. Patent No. 4,021,497 (1977)
  16. Lueken HG, Tanger U, Droste W, Ludwig G, Gubisch D, “Process for the Preparation of 2-ethylhexanol by Liquidphase Catalytic Hydrogenation of 2-ethylhexenal, and Catalyst,” U.S. Patent No. 4,968,849 (1988)
  17. Chinchen GC, Hay CM, Vandervell HD, Waugh KC, J. Catal., 103(1), 79 (1987) 
  18. Jeon JK, “A Study on CO Hydrogenation over Pd/HZSM-5 Catalysts and CO2 Hydrogenation over Copper-SAPO Hybrid Catalysts,” Ph. D. Dissertation, Korea Advanced Institute of Science and Technology, Daejeon (1995)