Korean Chemical Engineering Research, Vol.44, No.4, 363-368, August, 2006
구리 촉매 상에서 C9-알데히드의 수소화 반응에 의한 C9-알코올 합성
Synthesis of C9-Alcohol through C9-Aldehyde Hydrogenation over Copper Catalysts
E-mail:
초록
C9-알데히드를 수소화하여 C9-알콜을 제조하는 공정에 사용하기 위한 최적의 촉매를 선정하고, C9-알콜의 수율을 극대화하기 위한 운전 조건을 확립하기 위한 실험을 수행하였다. 구리 전구체로 acetate를 사용하고 침전제로 Na2CO3를 사용하여 제조한 CuO/ZnO/Al2O3(60:30:10 wt%) 촉매의 표면적 및 구리 비표면적이 가장 우수하였으며 C9-알데히드 수소화 반응에서도 가장 우수한 성능을 보였다. 최적화된 촉매를 장착한 trickle bed 반응기를 사용하여 175 °C, 800 psi, WHSV=3 hr.1의 조건에서 94.1 wt%의 C9-알콜 수율을 얻었다. 알데히드의 수소화 반응에 사용되는 다른 촉매들과 비교한 결과 Ni/kieselghur 촉매와 유사한 성능을 보였으며 Cu-Ni-Cr-Na/Al2O3 촉매 및 Ni-Mo/Al2O3 촉매의 경우보다 우수한 성능을 보이는 것을 확인하였다. 장기 촉매 테스트를 통해서 촉매의 안정성을 확인한 결과 약 72시간 이후에는 고비점 부산물의 생성량 증가로 인하여 C9-알콜의 수율이 약간씩 감소하였다.
This study selected the optimal catalyst for the process of producing C9-alcohol by hydrogenating C9-aldehyde, and carried out an experiment in order to establish the operating condition for maximizing the yield of C9-alcohol. The BET surface area and the specific area of copper were most excellent in CuO/ZnO/Al2O3 (60:30:10 wt%) catalyst produced using acetate as a precursor of copper and Na2CO3 as a precipitant, and the catalyst also showed the highest performance in C9-aldehyde hydrogenation. Using a trickle bed reactor loaded with optimized catalyst, we attained 94.1 wt% yield of C9-alcohol under the condition of 175 °C, 800 psi and WHSV=3 hr.1. According to the result of comparing with other catalysts used in the hydrogenation of aldehyde, the catalyst showed similar performance to that of Ni/kieselghur and higher than that of Cu-Ni-Cr-Na/Al2O3 and Ni-Mo/Al2O3. According to the result of examining the stability of the catalyst through a long-term catalysis test, the yield of C9-alcohol decreased slowly after around 72 hours due to the increasing production of high boiling-point byproducts.
- He D, Pang D, Wang T, Chen Y, Liu Y, Zhu Q, J. Mol. Catal. A-Chem., 174(1-2), 21 (2001)
- Jeon JK, Park SK, Park YK, Catal. Today, 93, 467 (2004)
- Jeon JK, Park YK, J. Korean Ind. Eng. Chem., 14(5), 666 (2003)
- Jeon JK, Park YK, Kim JM, Chem. Lett., 33(2), 174 (2004)
- Tang Z, Zhou YC, Feng YY, Appl. Catal. A: Gen., 273(1-2), 171 (2004)
- Wang XQ, Saleh RY, Ozkan US, J. Catal., 231(1), 20 (2005)
- Schroder U, Andersson B, J. Catal., 132(2), 402 (1991)
- Tronconi E, Lietti L, Groppi G, Forzatti P, Pasquon I, J. Catal., 135(1), 99 (1991)
- Sanchez-Delgado RG, Andriollo A, De Ochoa OL, Suarez T, Valencia N, J. Org. Chem., 209(1), 77 (1981)
- Vargas JM, Riley Kenneth L, “Hydrogenation Catalyst with low Phosphorous Content for oxo Alcohol Process,” U.S. Patent No. 5,382,71 (1995)
- Vargas JM, Riley Agosto M, Kenneth L, “Hydrogenation Catalyst for Oxo Alcohol Process,” U.S. Patent No. 5,399,793 (1995)
- Deckers G, Horn G, “Hydrogenation of Aldehydes, Ketones, Carboxylic Acids and Esters,” U.S. Patent No. 5,569,792 (1996)
- Deckers G, Horn G, “Copper Catalysts,” U.S. Patent No. 5,453,412 (1993)
- Thurman LR, Harris JB, “Process for the Production of 2-ethylhexanol,” U.S. Patent No. 5,227,544 (1993)
- Adam K, Haarer E, “Production of 2-ethylhexanol-(1) by Hydrogenation of 2-ethylhexen-(2)-al-(1),” U.S. Patent No. 4,021,497 (1977)
- Lueken HG, Tanger U, Droste W, Ludwig G, Gubisch D, “Process for the Preparation of 2-ethylhexanol by Liquidphase Catalytic Hydrogenation of 2-ethylhexenal, and Catalyst,” U.S. Patent No. 4,968,849 (1988)
- Chinchen GC, Hay CM, Vandervell HD, Waugh KC, J. Catal., 103(1), 79 (1987)
- Jeon JK, “A Study on CO Hydrogenation over Pd/HZSM-5 Catalysts and CO2 Hydrogenation over Copper-SAPO Hybrid Catalysts,” Ph. D. Dissertation, Korea Advanced Institute of Science and Technology, Daejeon (1995)