화학공학소재연구정보센터
Macromolecular Research, Vol.14, No.4, 424-429, August, 2006
Synthesis of Norbornene Block Copolymers Containing Polyhedral Oligomeric Silsesquioxane by Sequential Ring-Opening Metathesis Polymerization
E-mail:
The synthesis of a series of poly(POSS-NBE-b-MTD) copolymers was successfully accomplished, taking advantage of sequential, ring-opening, metathesis block copolymerization using RuCl2(=CHPh)(PCy3)2 catalyst. By using cyclopentyl-POSS-norbornene (POSS-NBE) monomer as the first block in the block copolymer, living poly(POSS-NBE) with controlled molecular weight and narrow molecular weight distribution was produced. Then, poly(POSS-NBE-b-MTD) copolymers were successfully prepared, in which sequential monomer addition of methyltetracyclododecene (MTD) to the living poly(POSS-NBE) chain ends was utilized to achieve quantitative crossover efficiency. Characterization by 1H NMR spectroscopy and GPC confirmed the high definition and structural integrity of the poly(POSS-NBE-b-MTD) copolymers. Thermal properties and morphologies of the POSS-containing block copolymer nanocomposites were also investigated by using thermogravimetric analysis (TGA), transmission electron microscopy (TEM), and wide-angle X-ray scattering (WAXS).
  1. Liz-Marzan LM, Kamat PV, Eds., Nanoscale Materials, Kluwer Academic Publishers, Boston (2003)
  2. Nalwa HS, Ed., Handbook of Nanostructured Materials and Nanotechnology, vol. 5., Organics, Polymers, and Biological Materials, Academic Press, San Diego (2000)
  3. Nalwa HS, Ed., Handbook of Organic-Inorganic Hybrid Materials and Nanocomposites, American Scientific Publishers, Stevenson Ranch (2003)
  4. Pyun J, Matyjaszewski K, Chem. Mater., 13, 3436 (2001) 
  5. Schwab JJ, Lichtenhan JD, Appl. Organomet. Chem., 12, 707 (1998) 
  6. Lichtenhan JD, Comments Ingor. Chem., 17, 115 (1995)
  7. Shockey EG, Bolf AG, Jones PF, Schwab JJ, Chaffee KP, Haddad TS, Lichtenhan JD, Appl. Organomet. Chem., 13, 311 (1999) 
  8. Cha BJ, Kim S, Char K, Macromol. Res., 13(3), 176 (2005)
  9. Zheng L, Waddon AJ, Farris RJ, Coughlin EB, Macromolecules, 35(6), 2375 (2002) 
  10. Zheng L, Farris RJ, Coughlin EB, Macromolecules, 34(23), 8034 (2001) 
  11. Zheng L, Farris RJ, Coughlin EB, Polym. Prepr, 42, 885 (2001)
  12. Zheng L, Kasi RM, Farris RJ, Coughlin EB, J. Polym. Sci. A: Polym. Chem., 40(7), 885 (2002) 
  13. Romo-Uribe A, Mather PT, Haddad TS, Lichtenhan JD, J. Polym. Sci. B: Polym. Phys., 36(11), 1857 (1998) 
  14. Zhang WH, Fu BX, Seo Y, Schrag E, Hsiao B, Mather PT, Yang NL, Xu DY, Ade H, Rafailovich M, Sokolov J, Macromolecules, 35(21), 8029 (2002) 
  15. Lichtenhan JD, Otonari YA, Carr MJ, Macromolecules, 28(24), 8435 (1995) 
  16. Jeon HG, Mather PT, Haddad TS, Polym. Int., 49, 453 (2000) 
  17. Mather PT, Jeon HG, Romo-Uribe A, Haddad TS, Lichtenhan JD, Macromolecules, 32(4), 1194 (1999) 
  18. Pyun J, Matyjaszewski K, Macromolecules, 33(1), 217 (2000) 
  19. Pyun J, Matyjaszewski K, Wu J, Kim GM, Chun SB, Mather PT, Polymer, 44(9), 2739 (2003) 
  20. Haddad TS, Mather PT, Jeon HG, Chun SB, Phillips SH, Mat. Res. Soc. Symp. Proc., 628, CC2 (2000)
  21. Kwon Y, Faust R, Adv. Polym. Sci., 167, 107 (2004)
  22. Zheng L, Farris RJ, Coughlin EB, Polym. Prepr, 42, 885 (2001)
  23. Zheng L, Waddon AJ, Farris RJ, Coughlin EB, Macromolecules, 35(6), 2375 (2002)