Polymer(Korea), Vol.30, No.5, 412-416, September, 2006
나노 자철광의 표면전하에 따른 Poly(acrylic acid) 수화젤의 물성
Properties of Poly(acrylic acid) Hydrogel by the Surface Charge of Magnetite Nanoparticles
E-mail:
초록
FeCl3와 Na2SO3, NH4OH에 의해 제조된 나노 자철광은 강자성체로, 화학 흡착에 의해 형성된 표면의 수산기에 의해 표면전하가 변하는 특성이 있다. 본 연구는 이런 나노 자철광을 함유한 poly(acrylic acid)(PAAc) 수화젤의 물성에 대하여 연구하였다. 나노 자철광의 특성은 XRD, AFM, FTIR로 측정하였다. 나노 자철광 표면의 제타전위는 pH 변화에 의해 큰 영향을 받았으며, pH 4 이하에서는 높은(+)전위를 나타내었으며, 등전점은 pH 7에서 확인되었다. pH 4 이하에서 나노 자철광 콜로이드를 PAAc 수화젤에 함유시키면, 강력한 수소결합이 형성되어 젤의 인장강도는 증가하고, 신율 및 팽윤비는 감소하여 기계적인 물성이 증가하였다. 나노 자철광의 함량에 비례하여 나노 자철광을 함유한 PAAc 수화젤의 자기이력은 증가하였다.
The superparamagnetic nanoparticles were prepared by coprecipitation of FeCl3 and Na2SO3 with NH4OH and the surface charge on hydroxyl group by chemisorption was changed depending on pH. We studied correlation between surface charge of magnetite and pH. Using this correlation the properties of poly(acrylic acid)(PAAc) hydrogel embedded with magnetite was studied. The magnetite was characterized by XRD, AFM, and FTIR. The zeta-potential of magnetite was influenced by pH: great positive charge was shown high under the pH 4 and isoelectric point was found at pH 7. The hydrogen bond formed by combining of PAAc hydrogel and magnetic colloid under pH 4 caused tensile strength to increase, while swelling and elongation at break to decrease. The result confirmed that the magnetic moment was increased proportionally to the content of magnetite.
- Doi M, Matsumoto M, HiroseY, Macromolecules, 25, 5504 (1992)
- Kim SY, Cho SM, Lee YM, Kim SJ, J. Appl. Polym. Sci., 78(7), 1381 (2000)
- Shu XZ, Zhu KJ, Song W, Int. J. Pharm., 212, 19 (2001)
- Richter A, Bund A, Keller M, Arndt KF, Sens. Actuators B-Chem., 99, 5799 (2004)
- Chiu HC, Lin YF, Hsu YH, Biomaterials, 23, 1103 (2002)
- Dio M, Matssumoto M, Hirose Y, Macromolecules, 25, 5504 (1992)
- Shiga T, "Advances in Polymer Science", in Deformation and Viscoelastic Behavior of Polymer Gels in Electric Fields, Springer-Verlag GmbH, Vol. 134, 131 (1997)
- Kohl M, Brugger D, Ohtsuka M, Takagi T, Sens. Actuators A-Phys., 114, 445 (2004)
- Farber P, Kronmuller H, J. Magn. Magn. Mater., 214, 159 (2000)
- Bar-Cohen Y, Electroactive Polymer [EAP] Actuators as Artificial Muscles, SPIE, Washington (2001)
- Aharoni SM, Synthesis, Characterization, and Theory of Polymeric Network and Gels, Plenum US, New York (1992)
- Makino K, Fujita Y, Takao K, Kobayashi S, Ohshima H, Colloids Surf. B: Biointerfaces, 21, 259 (2001)
- Kim SJ, Kim HI, Park SJ, Kim SI, Sens. Actuators A-Phys., 115, 146 (2004)
- Schwarte LM, Peppas NA, Polymer, 39(24), 6057 (1998)
- Yang Y, Engberts BFN, Physicochemical and Engineering Aspects, 169, 85 (2000)
- Kim I, Kang H, Jeong CN, Polym.(Korea), 27(3), 195 (2003)
- Zrinyi M, Barsi L, Buki A, Polym. Gels Netw., 5, 415 (1997)
- Zrinyi M, Szabo D, Kilian HG, Polym. Gels Netw., 6, 441 (1998)
- Szabo D, Szeghy G, Zrinyi M, Macromolecules, 31(19), 6541 (1998)
- Dresco PA, Zaitsev VS, Gambino RJ, Chu B, Langmuir, 15(6), 1945 (1999)
- Hiergeist R, Andra W, Buske N, Hergt R, Hilger I, Richter U, Kaiser W, J. Magn. Magn. Mater., 201, 420 (1999)
- Cheng FY, Su CH, Yang YS, Yeh CC, Tsai CY, Wu CL, Wu MT, Shieh DB, Biomaterials, 26, 729 (2005)
- Gallo JM, Eldin Hassan E, Pharm. Res., 5, 300 (1998)
- Pan BF, Gao F, Gu HC, J. Colloid Interface Sci., 284(1), 1 (2005)
- Qu SC, Yang HB, Ren DW, Kan SH, Zou GT, Li DM, Li MH, J. Colloid Interface Sci., 215(1), 190 (1999)
- Micale FJ, Zettlemoyer K, J. Colloid Interface Sci., 105, 570 (1985)
- Jolivet JP, Metal Oxide Chemistry and Synthesis, John Wiley & Sons, New York (2000)