화학공학소재연구정보센터
Korean Chemical Engineering Research, Vol.44, No.5, 483-488, October, 2006
Remote 플라즈마에서 위치 및 반응기체에 따른 PMMA의 식각 특성 분석
Influence of Loading Position and Reaction Gas on Etching Characteristics of PMMA in a Remote Plasma System
E-mail:
초록
유기고분자에 대한 건식 식각공정으로 remote 플라즈마를 이용하여 유리 표면에 도포된 PMMA의 식각공정에 관한 연구로 플라즈마 출력, 반응가스, 플라즈마 발생원과의 거리에 대한 식각특성을 측정하였다. 플라즈마 발생원으로부터 멀어질수록 플라즈마에 의해 발생된 라디칼 밀도로 인해 PMMA 식각속도가 감소하였다. 플라즈마 내에서 발생된 라디칼에 의해 PMMA가 제거되며, 플라즈마 출력이 증가할수록 PMMA 표면과 반응하는 라디칼 증가로 식각속도는 선형적으로 증가하였다. 식각 기체에서 산소의 양이 증가함에 따라 식각속도 증가와 더불어 식각표면의 거칠기도 증가함을 알 수 있었다.
Etching process of PMMA (Polymethyl Methacrylate) on glass surface was investigated by dry etching technique using remote plasma. To determine the etching characteristics, the remote plasma etching was conducted for various process parameters such as plasma power, reaction gas and distance from plasma generation. As the distance from the plasma generation was increased, the etch rate of PMMA was linearly decreased by radical density in plasma. PMMA has removed by reactive radicals in the plasma. The etch rate increased with plasma power because of more reactive radicals. The etch rate and surface roughness of PMMA increased with O2 concentration in the etchant.
  1. International Technology Roadmap for Semiconductors, ITRS (2002)
  2. Louis D, Nier ME, Fery C, Heitzmann M, Papon AM, Renard S, Microelectron. Eng., 61, 859 (2002) 
  3. Bell FH, Jouber O, Vallier L, Microelectron. Eng., 30, 333 (1996) 
  4. Jung JK, Lee WJ, Jan. J. Appl. Phys., 40, 1408 (2001)
  5. Basit NA, Kim HK, J. Vac. Sci. Technol. A, 13(4), 2214 (1995) 
  6. Lin YY, Liu Q, Tang TA, Yao X, Appl. Surf. Sci., 165(1), 34 (2000) 
  7. Sugimoto F, Okamura S, J. Electrochem. Soc., 146(7), 2725 (1999) 
  8. Pang SW, Sung KT, Ko KK, J. Vac. Sci. Technol. B, 10, 1118 (1992) 
  9. Delfino M, Salimian S, Hdul D, Ellingboe A, Tsai W, J. Appl. Phys., 71, 1001 (1992)