화학공학소재연구정보센터
Journal of Industrial and Engineering Chemistry, Vol.12, No.5, 727-732, September, 2006
Kinetics and Mechanism of EDTA-Catalyzed Oxidation of (S)-Phenylmercaptoacetic Acid by Chromium(VI)
E-mail:
The conversion of (S)-phenylmercaptoacetic acid to the corresponding sulfoxide was performed in 50 % (v/v) water-acetic acid mixture, in the presence of the disodium salt of ethylenediamminetetraacetic acid, the catalyst. The ionic strength had no appreciable effect on the reaction rate. The added Mn2+ retarded the rate considerably, suggesting a two-electron transfer in the rate-determining step. This notion is supported by the fact that added acrylonitrile had no effect on the rate of the reaction. The ratio k(D2O) / k(H2O) < 1 clearly indicates a significant solvent isotope effect. Highly negative entropy (ΔS#) values indicate a structured transition state. A mechanism is proposed involving the formation of a ternary complex, comprising ethylenediamminetetraacetic acid, Cr(VI), and (S)-phenylmercaptoacetic acid, in a fast step. The complex hydrolyzes in a subsequent slow rate-determining step, yielding the sulfoxide. Electron-releasing substituents in the phenyl ring accelerate the rate, while electron-withdrawing substituents retard the rate.
  1. Gurumurthy R, Sathiyanarayanan K, Gopalakrishnan M, Bull. Chem. Soc. Jpn., 65, 1096 (1992)
  2. Gurumurthy R, Sathiyanarayanan K, Gopalakrishnan M, Int. J. Chem. Kinet., 24, 953 (1992)
  3. Gurumurthy R, Sathiyanarayanan K, Gopalakrishnan M, Tetrahedron, 50, 13731 (1994)
  4. Gurumurthy R, Gopalakrishnan M, Indian J. Chem. Sect A-Inorg. Bio-Inorg. Phys. Theor. Anal. Chem., 25, 476 (1986)
  5. Gurumurthy R, Anandabaskaran T, Sathiyanarayanan K, Oxidation Commun., 21, 222 (1998)
  6. Srinivasan C, Pitchumani K, Bull. Chem. Soc. Jpn., 55, 289 (1982)
  7. Srinivasan C, Pitchumani K, Indian J. Chem. Sect A-Inorg. Bio-Inorg. Phys. Theor. Anal. Chem., 17, 162 (1979)
  8. Srinivasan C, Pitchumani K, Int. J. Chem. Kinet., 14, 789 (1982)
  9. Panigraghi GP, Nayak RN, Curr. Sci., 49, 740 (1980)
  10. Mangalam G, Meenakshisundaram SP, Pol. J. Chem., 72, 582 (1998)
  11. Sathiyanarayanan K, Suseela R, Lee CW, J. Ind. Eng. Chem., 12(2), 280 (2006)
  12. Karunakaran C, Chidambaranathan V, Croatica Chemica Acta,, 74, 51 (2001)
  13. Taqui Khan MM, Shukla RS, J. Mol. Catal., 71, 157 (1992) 
  14. Taqui Khan MM, Shukla RS, J. Mol. Catal., 72, 161 (1992)
  15. Meenakshisundaram S, Vinothini R, Croatica Chemica Acta, 76, 75 (2003)
  16. Rocek J, Hasan F, J. Am. Chem. Soc., 94, 3181 (1972)
  17. Radkowsley LA, Rocek J, J. Am. Chem. Soc., 90, 2968 (1968)
  18. Weissberger A, Prabakaran ES, Organic Solvent Physical Properties and Methods of purification, 2nd Ed., p. 130, Interscience Publishers, London (1955)
  19. Gabriel, Bernoulli, 12, 1939 (1879)
  20. Bakore GV, Jain LL, J. Inog. Nucl. Chem., 31, 805 (1969) 
  21. Mangalam G, Meenakshisundaram SP, J. Indian Chem. Soc., 68, 77 (1991)
  22. Wiberg KB, Oxidation in Organic Chemistry, p. 78, Academic Press, New York (1965)
  23. Nolan AL, Burns RC, Lawrance GA, J. Chem. Soc.-Dalton Trans., 3041 (1998)
  24. Exner O, Nature, 210, 488 (1955)
  25. Howard E, Levitt LS, J. Am. Chem. Soc., 75, 6171 (1973)
  26. Westheimer FH, Chem. Rev., 45, 419 (1949)
  27. Meenakshisundaram SP, Sockalingam RM, Collect. Czech. Chem. Commun., 66, 877 (2001)
  28. Sadagoparamanunjam VM, Sundaram S, Venkatasubramanian N, Inorg. Chim. Acta., 13, 133 (1975)
  29. Uma P, Rao K, Sastry MN, React. Kinet. Catal. Lett., 39, 255 (1989)
  30. Beck MT, Durham DA, J. Inorg. Nucl. Chem., 33, 461 (1971) 
  31. Satyendran, Ph. D. Thesis, Annamalai University (1999)
  32. Vandergrift G, Rocek J, J. Am. Chem. Soc., 98, 1371 (1976)
  33. Meenakshisundaram SP, Sockalingam RM, Bull. Chem. Soc. Jpn., 74, 1043 (2001)