화학공학소재연구정보센터
Polymer(Korea), Vol.30, No.6, 471-477, November, 2006
표면전극 형성 방법과 이온-교환막 두께가 이온성 고분자-금속 복합체(IPMC) 구동에 미치는 영향
Effect of the Surface Electrode Formation Method and the Thickness of Membrane on Driving of Ionic Polymer Metal Composites (IPMCs)
E-mail:
초록
이온성 고분자-금속 복합체(ionic polymer metal composite, IPMC)는 낮은 구동 전압에서도 비교적 빠른 응답 속도를 갖는 전기활성고분자(electro active polymer, EAP) 재료이다. IPMC는 인간의 근육과 유사한 인성 및 변형 특성을 나타내므로 최근 인공근육용 구동체 개발을 위한 많은 연구들이 진행되어 왔으며, 또한 우주항공, 센서 및 펌프 등의 다양한 분야에서 적용가능성이 조사되고 있다. 본 연구에서는 액상 내피온을 이용하여 용액 캐스팅 방법으로 다양한 두께의 내피온 막을 제조하는 방법을 도입하였다. IPMC 제조방법은 Oguro가 제안한 방법을 기초로 하여 도금온도를 변화시켜 무전해 도금법을 이용하여 내피온 내부로의 1차 전극을 형성시켰으며, 형성된 1차 전극의 안정성과 표면전기저항을 낮추기 위하여 이온빔보조증착법(ion beam assisted deposition, IBAD)을 도입하여 금과 이리듐을 1차 전극표면 위에 증착하여 2차 전극을 형성시켰다. 1, 2차 무전해 도금한 IPMC와 2차 IBAD 코팅한 IPMC 전극의 표면과 단면 형상을 SEM으로 관찰하였으며, 전압을 인가할 때 IPMC 내부의 수분증발 및 이온전도도의 변화를 조사하였다. 또한 다양한 두께의 IPMC를 제조하여 두께변화에 따른 변위와 구동력을 측정하였다.
Ion exchange metal composite(IPMC) has toughness equivalent to the range of human's muscle, transformation-actuation force by relatively low voltage and the fast response time. Thus, as a new method for preparing thicker IPMC, the solution casting method to make the films of various thicknesses out of liquid nafion was attempted in this study. To reduce the surface resistance of electrode, the first plated electrode prepared by Oguro method was replated with Au and Ir using ion beam assisted deposition(IBAD). The microstructures of electrode surfaces before and after IBAD plating were investigated using SEM. The change of water and ion-conductivity in IPMC were measured under applied voltage. The displacement and driving force of IPMCs with various thicknesses were measured to evaluate the driving properties.
  1. Shahinpoor M, System and Control, World Scientific, New York, p 31 (1998)
  2. Bar-Cohen Y, Leary S, Shahinpoor M, Harrison JO, Smith J, Proc. of SPIE, 3669, 57 (2000)
  3. Furukawa, Wen JX, Jpn. J. Appl. Phys., 23, 677 (1984)
  4. Hunter IW, Lafontaine S, IEEE Solid-State Sensor and Actuator Workshop, p 165 (1992)
  5. Pelrine R, Kornbluh R, Joseph J, Proc. of First Int. Micromachine Symp., 143 (1995)
  6. Lee JH, Nam JD, Choi HR, Kim HM, Jeon JW, Kim HK, Tak YS, 1st Int. Microsystem Symp., 183 (2001)
  7. Lee JH, Lee JD, Choi HR, Kim HM, Jeon JW, Kim HK, Tak YS, Proc. of SIPE, 4329, 63 (2001)
  8. Kim KJ, Shainpoor M, Razami A, Proc. of SPIE, 315, 3987 (2000)
  9. Osada Y, Hasebe M, Chem. Lett., 12, 1285 (1985)
  10. Masahiro I, Macromolecules, 24, 2890 (1985)
  11. Kurauchi, Shiga T, Hirose H, Okada A, Jpn. Polym., 36, 2894 (1987)
  12. Bar-Cohen Y, Xue T, Shainpoor M, Simpson J, Smith J, Robotics 98: The 3rd Conference and Exposition/ Demonstration Sponsored by American Society of Engineers, pp 26-30 (1998)
  13. Enikov ET, Nelson BJ, Proc. of SPIE., 3987, 129 (2000) 
  14. Shahinpoor M, Polymer Sensors and Actuators, 12, 325 (1999)
  15. Nemat-Nasser S, Li JY, J. Appl. Phys., 87, 3321 (2000)
  16. Bar-Cohen Y, Handbook on Biomimetics, NTS Inc., New York, Section 11, Chap. 8, pp. 1-13 (2000)
  17. Shainpoor M, Kim KJ, Smart Mater. Struct., 9, 543 (2000)
  18. Scrosati B, Application of Electroactive Polymers, Chapman & Hall, London (1993)
  19. Shahinpoor M, Kim KJ, U. S. Patent 2002050454 (2002)
  20. Shahinpoor M, Kim KJ, Smart Mater. Struct., 10, 819 (2001)
  21. Lee JH, Lee DS, Kim HK, Lee YK, Choi HR, Kim HM, Jeon JW, Tak YS, Nam JD, Polym.(Korea), 26(1), 105 (2002)