Polymer(Korea), Vol.30, No.6, 492-497, November, 2006
에폭시/몬모릴로나이트 나노복합재료의 유전특성 평가
Evaluation on Dielectric Properties of Epoxy/Montmorillonite Nanocomposites
E-mail:
초록
에폭시/몬모릴로나이트(MMT) master batch의 혼합온도를 달리하여 복합재료를 제조하였으며, MMT의 박리에 의한 복합재료의 유전특성을 비교하였다. MMT 함량이 낮은 복합재료에서 MMT의 박리가 지배적으로 발생하였으며, 고함량의 MMT 복합재료에서는 master batch 제조온도가 증가할수록 MMT의 층간거리가 증가하였다. 박리가 지배적인 저함량의 MMT 복합재료에서는 적절한 후경화 조건에 의해 유리전이온도가 증가되는 것을 알 수 있었다. MMT의 박리가 효과적으로 발생한 복합재료에서는 에폭시 분자구조의 배향분극이 억제됨으로써 유전율과 유전손실이 감소하였으며, 에폭시/MMT master batch의 혼합온도 및 시간, 그리고 복합재료의 후경화 조건에 따라서 복합재료의 유전특성을 향상시킬 수 있었다.
The epoxy composites are prepared with mixing temperature of epoxy/montmorillonite (MMT) melt master batch and the dielectric properties of the composites are also compared with intercalation of MMT. The exfoliation mainly occurrs in the low content of MMT composites, while in the composites with high content of MMT the interspacing distance increases as the mixing temperature of epoxy/MMT master batch is increased. Glass transition temperature of the composite which the MMT are effectively exfoliated is increased with the appropriate postcuring condition. Since the orientation polarization of dipoles in the epoxy molecules is restricted by the clay nanolayers exfoliated, the dielectric constant and dielectric loss of the composites are reduced. Furthermore, the dielectric properties could be improved by controling the mixing temperature and time of epoxy/MMT master batch as well as postcuring condition.
- Pecht MG, Nguyen LT, Hakim EB, Plastic-encapsulated Microelectronics: Materials, Processes, Quality, Reliability, and Application, John Wiley & Sons, Inc., New York, Chap. 2 (1995)
- "Present State and Future Prospect of 2005 Electronics Polymer Materials (Japanese)", Fuji Chimera Research Institute, Inc., Tokyo (2005)
- Shibata C, "Polymeric Materials and Microwave Properties", in Development of Plastic Materials for Microwave Applications(Japanese), F. Baba, Editor, CMC, Tokyo, Chap. 2 (2005)
- Igarashi K, Japanese Patent 354754 (2001)
- Usami Y, Demura S, Fujimura K, Takahashi K, Japanese Patent 82063 (2003)
- Komuku I, Hirai M, Imada T, Japanese Patent 240654 (2001)
- Hirai T, Imura T, Japanese Patent 252951 (2003)
- Ishii K, Norisue Y, Hiramatsu S, Miyamoto M, Japanese Patent 206333 (2003)
- Yoshida T, Japanese Patent 256137 (2002)
- Suwa T, Japanese Patent 69156 (2002)
- Gilman JW, Appl. Clay Sci., 15, 31 (1999)
- Lebaron PC, Wang Z, Pinnavaia TJ, Appl. Clay Sci., 15, 11 (1999)
- Lee SU, Oh IH, Lee JH, Choi KY, Lee SG, Polym.(Korea), 29(3), 271 (2005)
- Lan T, Kaviratna PD, Pinnavaia TJ, J. Phys. Chem. Solid, 57, 1005 (1996)
- Nam JD, Hwang SD, Choi HR, Lee JH, Kim KJ, Heo S, Smart Mater. Struct., 14, 87 (2005)
- Ku CC, Liepins R, Electrical Properties of Polymers: Chemical Principles, Hanser Publishers, New York, p. 335 (1987)
- Williams EPM, Seferis JC, Wittman CL, Parker GA, Lee JH, Nam JD, J. Polym. Sci. B: Polym. Phys., 42(1), 1 (2004)