화학공학소재연구정보센터
Polymer(Korea), Vol.30, No.6, 532-537, November, 2006
Cellulose Diacetate/Starch 복합체의 제조 및 물성
Preparation and Properties of Celluose Diacetate/Starch Composite
E-mail:
초록
최근 환경문제가 대두되면서 기존의 석유계 플라스틱을 대체할 생분해성 플라스틱에 관심이 고조되고 있다. 이에 본 실험에서는 토양에서 생분해가 가능한 셀룰로오스 디아세테이트/전분 혼합체를 제조하여 그 특성을 연구하였다. 이 혼합체에 가소제로 트리아세틴을 첨가하여 용융가공한 복합체의 물성을 조사하였다. 전분의 함량이 증가할수록 이 복합체의 가공성이 향상되며 인장강도와 탄성률은 감소하고 신율은 증가하였다. 전분의 함량이 증가하면 복합체의 Tg는 감소하였다. SEM을 이용하여 전분의 복합체내에서의 분산성을 관찰하였다.
In order to successfully meet the environmental and recycling problems, natural polymer and their derivatives are recognized as a promising biodegradable material. In this study, the biodegradable composites of cellulose diacetate and starch were prepared, and their physical and thermal properties were investigated. For the melting processing, triacetine was added as a plasticizer into the composites. The processability of cellulose diacetate was further enhanced by increasing the amount of starch in the composites. The tensile stress and Young's modulus were decreased and elongation was increased with increasing the amount of starch in them. A Tg value was decreased with increasing the amount of starch in the composites. Also, the morphology of the composites were observed with the SEM.
  1. Wurzburg OB, Modified Starches; Properties and Uses, CRC Press, Boca Raton, Florida, p.277 (1986)
  2. Brandt L, Cellulose ethers, in "Ullmann's Encyclopedia of Industrial Chemistry", F. T. Campbell, R. Pfefferkorn, and J. F. Rounsaville, Editors, VCH Verlagsgesellschaft, Weinheim, p.461 (1986)
  3. van der Burgt YEM, Bergsma J, Bleeker IP, Mijland PJHC, Van der Kerk-van Hoof A, Kamerling JF, Vliegenthart JFG, Starch-Starke, 40, 52 (2000)
  4. Griffin GJL, U.S. Patent 4,021,355 (1977)
  5. Griffin GJL, U.S. Patent 4,125,495 (1977)
  6. Willett JL, Jasberg BK, Swanson LL, Melt rheology of thermoplastic starch, polymers from agricultural coproducts, 575(chap. 3), 50 (1994)
  7. Curvelo AAS, de Carvalho AJF, Agnelli JAM, Carbohydr. Polym., 45, 183 (2001)
  8. Shogren RL, Lawton JW, Tiefenbacher KF, Chen L, J. Appl. Polym. Sci., 68(13), 2129 (1998)
  9. Baumberg S, Lapierre C, Monties B, Della Valle C, Polym. Degrad. Stabil., 59, 273 (1998)
  10. Bastioli C, "Degradable Polymers: Principles and Applications", G. Scott and D. Gilead, Editors, Chapman & Hall, London, p.112-137 (1995)
  11. Yoo DI, Yang KS, Choi JY, Polym. Sci. Technol., 8(5), 530 (1997)
  12. Mwaikambo LY, Ansell MP, Angew. Makromol. Chem., 272, 108 (1999)
  13. Lu X, Zhang MQ, Rong MZ, Shi G, Yang GC, Zeng HM, Adv. Compos. Lett., 8, 231 (1999)
  14. Hon DNS, Josefina MSL, J. Polym. Sci. A: Polym. Chem., 27, 4143 (1989)
  15. Hon DNS, Ou NJ, J. Polym. Sci. A: Polym. Chem., 27, 2457 (1989)
  16. Lee SH, Lee SY, Nam JD, Lee Y, Polym.(Korea), 30(1), 70 (2006)
  17. Riedel U, Nickel J, Die Angewandte Makromolekulare Chemie., 272, 34 (1999) 
  18. Wollerdorfer M, Bader H, Ind. Corps. Products, 8, 105 (1998) 
  19. Amash A, Zugenmaier P, Polymer, 41(4), 1589 (2000)
  20. Dufresne A, Vignon MR, Macromolecules, 31(8), 2693 (1998)
  21. Dufresne A, Dupeyre D, Vignon MR, J. Appl. Sci., 72, 2080 (2000) 
  22. Woodhams RT, Thomas G, Rodgers DK, Polym. Eng. Sci., 24, 1166 (1984)
  23. Funke U, Bergthaller W, Lindhauer MG, Polym. Degrad. Stabil., 59, 293 (1998)
  24. Albano C, Gonzalez J, Ichazo M, Kaiser D, Polym. Degrad. Stabil., 66, 179 (1999)
  25. Marcovich NE, Reboredo MM, Aranguren MI, Thermochim. Acta, 272, 45 (2001)
  26. Alvarez VA, Vazquez A, Polym. Degrad. Stabil., 84, 16 (2004)
  27. Alvarez VA, Vazquez A, Macromol. Symp., 208, 293 (2004)
  28. Pothan LA, Oommen Z, Thomas S, Compos. Sci. Technol., 63, 223 (2003)
  29. Wang H, Sun X, Seib P, J. Appl. Polym. Sci., 84, 1259 (2002)