Polymer(Korea), Vol.30, No.6, 556-562, November, 2006
고분자 반응에 의한 거의 완전 4차화된 폴리(4-비닐피리딘)의 합성 및 도데실 황산 소듐과의 응집 특성
Synthesis of Almost Fully Quarternized Poly(4-vinylpyridine)s by Polymer Reaction and Aggregation Property with Sodium Dodecyl Sulfate
E-mail:
초록
분자량이 다른 두 가지 폴리(4-비닐피리딘)(Mw=50 kg/mol 및 200 kg/mol)을 알킬기의 탄소수(m)를 변화시키면서 N-알킬화시켜 이온성 고분자를 합성하였다. 알킬화제로서 디메틸 설페이트(m=1) 및 브롬화 알칸(m=5, 8, 12, 16 및 22)을 사용하였다. 합성한 이온성 고분자의 조성은 NMR 분광분석법 및 원소분석법을 사용하여 결정하였다. 그 결과로써 거의 완전한 4차 알킬화 반응에 의해 전해질 고분자가 얻어졌음을 알 수 있었다. 합성한 전해질고분자의 수용액에 도데실 황산 소듐(SDS)을 첨가 시 발생되는 탁도 변화를 조사하여 임계응집농도(CAC)를 결정하였으며, 이러한 CAC가 고분자의 분자량, N-알킬기의 길이 및 NaCl의 농도 변화에 어떻게 의존하는가를 조사하였다. 결과로써 폴리(4-비닐피리딘)의 분자량이 클수록 또한 알킬 곁사슬의 길이가 길수록 더 적은 양의 SDS 첨가로도 응집체가 형성되었음을 알 수 있었다.
Quarternized poly(4-vinyl pyridine)s have been prepared by the reaction of poly(4-vinyl pyridine)s (Mw=50 kg/mol and 200 kg/mol) and alkylating agents varying the carbon numbers of the alkyl groups (m): dimethyl sulfate (m=1) as well as bromoalkane (m=5, 8, 12, 16, and 22) was used as an alkylating agent. The degree of alkylation was determined by using an elemental analysis and NMR spectroscopy. As a result, polyelectrolytes were obtained by the almost full alkylation of poly(4-vinyl pyridine)s. The critical aggregation concentration (CAC) was determined by measuring the change of turbidity occurred by addition of sodium dodecyl sulfate (SDS) into aqueous solution of quarternized poly(4-vinyl pyridine)s, and the dependence of molecular weight of polymer, the length of N-alkyl group and concentration of NaCl upon CAC was investigated. As a result, as the molecular weight or the length of alkyl group was increased, less amount of SDS could induce the aggregation.
Keywords:fully quarternized poly(4-vinyl pridine);critical aggregation concentration;polyelectrolyte;turbidity;sodium dodecyl sulfate
- Jerome R, Mazurek M, Ionomers, M. R. Tant, K. A. Mauritz, and G. L. Wilkes, Editors, Blackie Academic and Professional, London, Chap. 1, p. 3 (1997)
- Dautzenberg H, Jaeger W, Kotz J, Philipp B, Seidel C, Stscherbina D, Polyelectrolytes, Hanser Publishers, Munich, Chap. 3, p. 112 (1994)
- Forster S, Schmidt M, Antonietti M, J. Phys. Chem., 96, 4008 (1992)
- Wang YL, Kimura K, Huang QR, Dubin PL, Jaeger W, Macromolecules, 32(21), 7128 (1999)
- Philippova OE, Hourdet D, Audebert R, Khokhlov AR, Macromolecules, 29, 2882 (1996)
- Anthony O, Zana R, Langmuir, 12(8), 1967 (1996)
- Anthony O, Zana R, Langmuir, 12(15), 3590 (1996)
- Okuzaki H, Osada Y, Macromolecules, 28(13), 4554 (1995)
- Ciferri A, Macromol. Chem. Phys., 195, 457 (1994)
- Hayakawa K, Santerre JP, Kwals JC, Macromolecules, 16, 1642 (1983)
- Zheng X, Cao W, Eur. Polym. J., 37, 2259 (2001)
- Esumi K, Kuwabara K, Chiba T, Kobayashi F, Mizutani H, Torigoe K, Colloids Surf. A: Physicochem. Eng. Asp., 197, 141 (2002)
- Hallett FR, Riess G, Croucher MD, Macromolecules, 24, 87 (1991)
- Li YJ, Dubin PL, Dautzenberg H, Luck U, Hartmann J, Tuzar Z, Macromolecules, 28(20), 6795 (1995)
- Xia J, Zhang H, Rigsbee DR, Dubin PG, Shaikh T, Macromolecules, 26, 2759 (1993)
- Folmer BM, Kronberg B, Langmuir, 16(14), 5987 (2000)
- Wolszczak M, Miller J, J. Photochem. Photobiol. A-Chem., 147, 45 (2002)
- Mura JL, Riess G, Croucher MD, Macromolecules, 24, 1033 (1991)
- Kalyanasundaram K, Thomos JK, J. Am. Chem. Soc., 99, 2037 (1977)
- Capek I, Adv. Colloid Interface Sci., 97, 91 (2002)
- Ringsdorf H, Venzmer J, Winnik FM, Macromolecules, 24, 1678 (1991)
- Tanaka R, Meadows J, Williams PA, Phillips GO, Macromolecules, 25, 1304 (1992)
- Jonsson B, Lindman B, Holmberg K, Kronberg B, Surfactants and Polymers in Aqueous Solutuon, John Wiley & Sons, U.K., Chap. 2 (1998)
- Navarro-Rodriguez D, Frere Y, Gramain P, Makromol. Chem., 192, 2975 (1991)
- Navarro-Rodriguez D, Guillon D, Skoulios A, Makromol. Chem., 193, 3117 (1992)
- Kim YC, Park IH, Sim HS, Choi EJ, Polym.(Korea), 28(2), 154 (2004)
- Frere Y, Gramain P, Macromolecules, 25, 3184 (1992)