화학공학소재연구정보센터
Journal of Industrial and Engineering Chemistry, Vol.12, No.6, 846-852, November, 2006
Application of Peak Property Method for Estimating Apparent Kinetic Parameters of Cellulose Pyrolysis Reaction
E-mail:
This paper presents the results of applying the Peak Property Method (PPM) to estimate the pyrolysis kinetic parameters of cellulose. The PPM was developed on the basis of the assumption that a specific combination of three peak properties (peak temperature, peak height, and conversion at peak temperature) of a derivative thermogravimetry (DTG) curve would describe a unique thermal reaction. Theoretical DTG curves constructed using the kinetic parameters derived from the PPM simulate the experimental DTG curves the best among the model-fitting methods. The PPM provides a reaction order of 1.5 for the cellulose pyrolysis reaction, indicating that the first-order kinetics proposed by most previous studies may be inappropriate. Disparity between the activation energies determined by the model-free methods and model-fitting methods including the PPM suggests that a power law equation is not suitable for representing the conversion function of cellulose pyrolysis.
  1. Agrawal R, Can. J. Chem. Eng., 66, 403 (1988)
  2. Agrawal R, Can. J. Chem. Eng., 66, 413 (1988)
  3. Antal MJ, Varhegyi G, Ind. Eng. Chem. Res., 34(3), 703 (1995)
  4. Broido A, in Thermal uses and properties of carbohydrates, and lignins, F. Shafizadeh, K. Sarkanen, and D. Tillman Eds., Academic Press, New York, pp.19-36 (1976)
  5. Bigger S, Scheirs J, Camino G, Polym. Degrad. Stabil., 62, 33 (1998)
  6. Blasi C, Biomass Bioenerg., 7(1-6), 87 (1994)
  7. DIEBOLD JP, Biomass Bioenerg., 7(1-6), 75 (1994)
  8. Bradbury A, Sakai Y, Shafizadeh F, J. Appl. Polym. Sci., 23, 3271 (1979)
  9. Conesa JA, Caballero JA, Marcilla A, Font R, Thermochim. Acta, 254, 175 (1995)
  10. Gronli M, Antal MJ, Varhegyi G, Ind. Eng. Chem. Res., 38(6), 2238 (1999)
  11. Varhegyi G, Antal M, Energy Fuels, 3, 329 (1989)
  12. Varhegyi G, Antal M, Jakab E, Szabo P, J. Anal. Appl. Pyrolysis, 42, 73 (1997)
  13. Varhegyi G, Jakab E, Antal M, Energy Fuels, 8, 1345 (1994)
  14. Kim SS, Chung YJ, Choi SH, Jeon JK, J. Ind. Eng. Chem., 11(4), 488 (2005)
  15. Varhegyi G, Jakab E, Antal M, Polym. Degrad. Stabil., 85, 799 (2004)
  16. Kim SD, Park JK, Thermochim. Acta, 264, 137 (1995)
  17. Milosavljevic I, Suuberg EM, Ind. Eng. Chem. Res., 34(4), 1081 (1995)
  18. Agrawal RK, Thermochim. Acta, 203, 93 (1992)
  19. Coats AW, Redfern JP, Nature, 201, 68 (1964)
  20. Sharp JH, Wentworth SA, Anal. Chem., 41, 2060 (1969)
  21. Freeman ES, Carroll B, J. Phys. Chem., 62, 394 (1958)
  22. Reynolds J, Burnham A, Energy Fuels, 11, 88 (1997)