화학공학소재연구정보센터
Automatica, Vol.42, No.5, 841-848, 2006
Parameter governors for discrete-time nonlinear systems with pointwise-in-time state and control constraints
Parameter governors are add-on control schemes that adjust parameters (such as gains or offsets) in the nominal control laws to avoid violation of pointwise-in-time state and control constraints and to improve the overall system transient performance via the receding horizon minimization of a cost functional. As compared to more general model predictive controllers, parameter governors tend to be more conservative but the computational effort needed to implement them on-line can be relatively modest because the few parameters to be optimized remain constant over the prediction horizon. In this paper, we discuss the properties of several classes of parameter governors which have a common property in that the governed parameters do not shift the steady-state equilibrium of the states on which the incremental cost function explicitly depends on. This property facilitates the application of meaningful cost functionals. An example, together with simulation results, is reported to provide additional insights into the operation of the proposed parameter governor schemes. (c) 2006 Elsevier Ltd. All rights reserved.