Inorganic Chemistry, Vol.45, No.8, 3325-3343, 2006
Silver(I) coordination polymers based on a nano-sized bent bis(3-acetylenylphenyl-(4-cyanophenyl))oxadiazole ligand: The role of ligand isomerism and the templating effect of polyatomic anions and solvent intermediates
One nanosized oxadiazole bridging ligand, bis(3-acetylenylphenyl-(4-cyanophenyl))oxadiazole (011), was designed and synthesized by the reaction of bis(3-iodophenyl)oxadiazole with 4-cyanophenylacetylene via a Sonogashira-Hagihara cross-coupling reaction. Eight Ag(I)-L11 coordination polymers with one-, two-, or three-dimensional structures have been successfully prepared by the reaction of L11 with various Ag(l) salts in solution. New coordination polymers were fully characterized by infrared spectroscopy, elemental analysis, and single-crystal X-ray diffraction. All new complexes contain silver heteroatom cluster-connecting nodes, and the L11 ligand is "doubling up" in the frameworks. In this Ag(l)-L11 system, the conformation of L11 is versatile because of the conformational rotation around the central oxadiazole moiety and depends greatly on the counterion and solvent system used in the formation of the complexes. In addition, the luminescence property and host-guest chemistry of some complexes were investigated primarily.