Journal of Chemical Technology and Biotechnology, Vol.81, No.6, 1021-1028, 2006
Effect of changes of pH on the anaerobic/aerobic transformations of biological phosphorus removal in wastewater fed with a mixture of propionic and acetic acids
Most studies on the transformation of enhanced biological phosphorus removal have used acetic acid as the carbon source and focused on the anaerobic phase. In this paper the anaerobic and aerobic transformations of phosphorus removal microorganisms at various pH values were investigated with wastewater containing 3.14 mm C propionic acid and 1.56 mM C acetic acid. It was observed that the influence of acidic pH on the concentrations of mixed-liquor suspended solids and biomass was stronger than that of basic pH, and the maximal cell growth appeared at pH 7.6. The observed uptake rate of propionic acid was much faster than that of acetic acid at all pH values investigated, and both were affected by pH. The anaerobic transformations of polyhydroxyalkanoates and glycogen linearly decreased with increasing pH from 6.6 to 8.6, and a greater glycogen transformation correlated to greater polyhydroxyalkanoate transformation in both anaerobic and aerobic stages. Further studies revealed that at pH 6.6 and 8.6 the overall phosphorus release and uptake was low and there was no net phosphorus removal, although the initial phosphorus release was high. However, when the pH was controlled at pH 7.1 and 7.6, a phosphorus removal efficiency of 97.03% and 96.43% was achieved, respectively, which was greater than that of 87.46% at uncontrolled pH. (c) 2006 Society of Chemical Industry.
Keywords:enhanced biological phosphorus removal;anaerobic/aerobic transformation;pH;propionic acid;acetic acid;polyhydroxyalkanoates