화학공학소재연구정보센터
Journal of Colloid and Interface Science, Vol.298, No.1, 39-49, 2006
Characteristics of phenol and chlorinated phenols sorption onto surfactant-modified bentonite
Surfactant-modified bentonite was synthesized by replacing adsorbed Na+ with long-chain alkyl quaternary ammonium cation, hexade-cyltrimethylammonium bromide (HDTMAB). The sorption isotherms of phenol, p-chlorophenol, and 2,4-dichlorophenol were modeled according to the Langmuir and Freundlich equations. The Langmuir isotherm was found to describe the equilibrium adsorption data well. The mechanisms and characteristics of sorption of these ionizable organic contaminants onto surfactant-modified bentonite from water were investigated systematically and described quantitatively. The sorption properties are affected by the treatment conditions, such as amount of organobentonite, and the properties of organic compounds. Results indicated that adsorption of phenols from water was in proportion to their hydrophobicities, which increased with chlorine addition (phenol < p-chlorophenol < 2,4-dichlorophetiol). Sorption isotherms of these phenols were typically nonlinear. Both adsorption and partition contribute to the sorption of investigated phenols to organobentonite. The separate contributions of adsorption and partition to the total sorption of these compounds to organobentonite is analyzed mathematically. Results indicate that the partition effect is weak and linear with contaminant concentration, whereas the adsorption effect is more powerful and nonlinear with contaminant concentration. The sorption of phenols onto organobentonite was dominated by adsorption at low concentrations and partition started to dominate at high concentrations, making the organobentonites powerful sorbents for organic contaminants over a wide range of concentrations. (c) 2005 Elsevier Inc. All rights reserved.