Journal of Physical Chemistry B, Vol.110, No.17, 8850-8855, 2006
Interaction of 4-nitroquinoline-1-oxide with indole derivatives and some related biomolecules: A study with magnetic field
Laser flash photolysis and an external magnetic field have been used for the study of the interaction of 4-nitroquinoline-1-oxide (4NQO) with some indole derivatives, amino acids, tyrosine and tryptophan, and model proteins, lysozyme and bovine serum albumin. In an aprotic medium, photoinduced electron transfer (PET) from indoles to 4NQO is accompanied by proton transfer from the indole moieties irrespective of the substitution at the N-1 position. For 1,2-dimethylindole, however, proton abstraction is hindered possibly due to steric effects. In a protic medium, obviously proton transfer is possible from the medium and is the dominating reaction following PET. The effect of an external magnetic field is very small for all the systems studied. This is attributed to a competition between geminate proton abstraction by the 4NQO radical anion from the partner radical cation and escape of the 4NQO radical anion to the medium followed by proton transfer. The latter process is more predominant, and the former one, which produces a small population of geminate spin-correlated radical pairs, leads to a minor field effect. Another interesting observation is the affinity of 4NQO toward the tryptophan residues in a protein environment. It is seen that PET takes place preferably from the tryptophan residues rather than from the tyrosine residues.