Journal of the American Chemical Society, Vol.128, No.15, 5127-5135, 2006
Fine tuning of the rotary motion by structural modification in light-driven unidirectional molecular motors
The introduction of bulky substituents at the stereogenic center of light-driven second-generation molecular motors results in an acceleration of the speed of rotation. This is due to a more strained structure with elongated C=C bonds and a higher energy level of the ground state relative to the transition state for the rate-limiting thermal isomerization step. Understanding the profound influence that variation of the substituent at the stereogenic center holds over the rotational speed of the light-driven molecular motor has enabled the development of the fastest molecular motor reported thus far.